Publications
|
A two-field formulation for surfactant transport within the algebraic Volume of Fluid method. Antritter, T.; Josyulaa, T.; Marić, Tomislav; Bothe, Dieter; Hachmann, P.; Buck, B.; Gambaryan-Roismana, T.; Stephan, Peter (preprint). https://arxiv.org/abs/2311.08591
|
Mathematical analysis of modified level-set equations. Bothe, Dieter; Fricke, Mathis; Soga, Kohei (preprint). https://arxiv.org/abs/2310.05111
|
A locally signed-distance preserving level set method (SDPLS) for moving interfaces. Fricke, Mathis; Marić, Tomislav; Vučković, Aleksandar & Bothe, Dieter (preprint). https://arxiv.org/pdf/2208.01269
|
A pragmatic workflow for research software engineering in computational science. Marić, Tomislav; Gläser, D.; Lehr, J.-P.; Papagiannidis, I., Lambie, Benjamin; Bischof, Christoph (preprint). https://arxiv.org/abs/2310.00960
|
Analysis of a bulk-surface reaction-sorption-diffusion system with Langmuir-type adsorption. Augner, Björn; Bothe, Dieter (preprint) https://arxiv.org/2303.08479
|
Numerical wetting benchmarks--advancing the plicRDF-isoAdvector unstructured Volume-of-Fluid (VOF) method. Asghar, M. Hassan; Fricke, Mathis; Bothe, Dieter; Marić, Tomislav (preprint). https://arxiv.org/pdf/2302.02629
|
Efficient three-material PLIC interface positioning for enhanced performance of the three-phase VoF Method. Kromer, Johannes; Potyka, Johanna; Schulte, Kathrin & Bothe, Dieter (2023), Computers & Fluids 266, 106051. https://doi.org/10.1016/j.compfluid.2023.106051
|
An analytical study of capillary rise dynamics: Critical conditions and hidden oscillations. Fricke, Mathis; Ouro-Koura, El Assad; Raju, Suraj; von Klitzing, Regine; Joel De Coninck; Bothe, Dieter (2023), Physica D: Nonlinear Phenomena 455, 133895. https://doi.org/10.1016/j.physd.2023.133895
|
A collocated unstructured finite volume Level Set / Front Tracking method for two-phase flows with large density-ratios. Liu, Jun; Tolle, Tobias; Bothe, Dieter & Marić, Tomislav (2023), J. Comp. Phys. 493, 112426. https://doi.org/10.1016/j.jcp.2023.112426
|
Asymmetry during fast stretching of a liquid bridge. Asghar, Muhammad Hassan; Brockmann, Ph.; Dong, Xulan; Niethammer, Matthias; Marić, Tomislav; Roisman, Ilia; Bothe, Dieter (2023), Chemical Engineering & Technology 35, 1800-1807. https://doi.org/10.1002/ceat.202300240
|
Second-order accurate normal reconstruction from volume fractions on unstructured meshes with arbitrary polyhedral cells. Kromer, Johannes; Leotta, Fabio & Bothe, Dieter (2023), J. Comp. Phys. 491, 112363. https://doi.org/10.1016/j.jcp.2023.112363
|
On the structure of continuum thermodynamical diffusion fluxes -- A novel closure scheme and its relation to the Maxwell-Stefan and the Fick-Onsager approach. Bothe, Dieter & Druet, Pierre-Etienne (2023), Int. Journal of Engineering Science 184, 103818. https://doi.org/10.1016/j.ijengsci.2023.103818
|
Multicomponent incompressible fluids – an asymptotic study. Bothe, Dieter; Dreyer, Wolfgang; Druet, Pierre-Etienne (2023). ZAMM 103 (7):e202100174. https://doi.org/10.1002/zamm.202100174
|
Third-order accurate initialization of VOF volume fractions on unstructured meshes with arbitrary polyhedral cells. Kromer, Johannes & Bothe, Dieter (2023), J. Comp. Phys. 475, 111840. https://doi.org/10.1016/j.jcp.2022.111840
|
Computing hydrodynamic eigenmodes of channel flow with slip – A highly accurate algorithm. Raju, Suraj; Gründing, Dirk; Marić, Tomislav; Bothe, Dieter & Fricke, Mathis (2022), The Canadian Journal of Chemical Engineering 100 (12), 3531-3547. https://doi.org/10.1002/cjce.24598
|
Computation of interfacial flows using Continuous Surface Stress method with adaptive mesh refinement in a Quad/Octree grid structure. Liu, Muyuan; Bothe, Dieter; Yang, Yiren & Chen, Hao (2022), Computers & Fluids 245, 105610. https://doi.org/10.1016/j.compfluid.2022.105610
|
On the molecular mechanism behind the bubble rise velocity jump discontinuity in viscoelastic liquids. Bothe, Dieter; Niethammer, Matthias; Pilz, Christian & Brenn, Günter (2022), J. Non-Newtonian Fluid Mech. 302, 104748. https://doi.org/10.1016/j.jnnfm.2022.104748
|
Multipath Flow Metering of High-Velocity Gas using Ultrasonic Phased-Arrays. Haugwitz, Christoph; Hartmann, Claas; Allevato, Gianni; Rutsch, Matthias; Hinrichs, Jan; Brötz, Johannes; Bothe, Dieter; Pelz, Peter F. & Kupnik, Mario (2022), IEEE Open Journal of Ultrasonics, Ferroelectrics, and Frequency Control 2, 30-39. https://doi.org/10.1109/ojuffc.2022.3141333
|
triSurfaceImmersion: Computing volume fractions and signed distances from triangulated surfaces immersed in unstructured meshes. Tolle, Tobias; Gründing, Dirk; Bothe, Dieter & Marić, Tomislav (2022), Computer Physics Communications 273, 108249. https://doi.org/10.1016/j.cpc.2021.108249
|
Sharp-Interface Continuum Thermodynamics of multicomponent fluid systems with interfacial mass. Bothe, Dieter (2022), Int. Journal of Engineering Science 179, 103731. https://doi.org/10.1016/j.ijengsci.2022.103731
|
Face-based Volume-of-Fluid interface positioning in arbitrary polyhedra. Kromer, Johannes & Bothe, Dieter (2022), J. Comp. Phys. 449, 110776. https://doi.org/10.1016/j.jcp.2021.110776
|
Multicomponent incompressible fluids – an asymptotic study. Bothe, Dieter; Dreyer, Wolfgang & Druet, Pierre-Etienne (2021), ZAMM e202100174, WIAS Preprint 2825. https://doi.org/10.1002/zamm.202100174
|
Analysis of some heterogeneous catalysis models with fast sorption and fast surface chemistry. Augner, Björn & Bothe, Dieter (2021), J. Evol. Eqs. 21, 3521-3552. https://doi.org/10.1007/s00028-021-00692-4
|
Well-posedness analysis of multicomponent incompressible flow models. Bothe, Dieter & Druet, Pierre-Etienne (2021), J. Evol. Eqs. 21, 4039-4093, WIAS Preprint 2720. https://arxiv.org/pdf/2005.12052
|
Mass transport in multicomponent compressible fluids: Local and global well-posedness in classes of strong solutions for general class-one models. Bothe, Dieter & Druet, Pierre-Etienne (2021), Nonlinear Analysis: Theory, Methods & Applications 210, 112389, WIAS Prepring 2658. https://arxiv.org/pdf/2001.08970
|
Small-scale phenomena in reactive bubbly flows: experiments, numerical modeling, and applications. Schlüter, Michael; Herres-Pawlis, Sonja; Nieken, Ulrich; Tuttlies, Ute & Bothe, Dieter (2021), Annual Review of Chemical and Biomolecular Engineering 12, 625-643. https://doi.org/10.1146/annurev-chembioeng-092220-100517
|
Breakup dynamics of capillary bridges on hypophobic stripes. Hartmann, Maximilian; Fricke, Mathis; Weimar, Lukas; Gründing, Dirk; Marić, Tomislav; Bothe, Dieter & Hardt, Steffen (2021), Int. J. Multiphase Flow 138. https://doi.org/10.1016/j.ijmultiphaseflow.2021.103582
|
Computing Mass Transfer at Deformable Bubbles for High Schmidt Numbers. Weiner, Andre; Gründing, Dirk & Bothe, Dieter (2021), Chemie Ingenieur Technik. https://doi.org/10.1002/cite.202000214
|
The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model. Augner, Björn & Bothe, Dieter (2021), Discrete Continuous Dynamical Systems – Series S 14 (2), 533-574. https://doi.org/10.3934/dcdss.2020406
|
Numerical simulation of non-isothermal viscoelastic flows at high Weissenberg numbers using a finite volume method on general unstructured meshes. Meburger, Stefanie; Niethammer, Matthias; Bothe, Dieter & Schäfer, Michael (2021), Journal of Non-Newtonian Fluid Mechanics, 287, 104451. https://oi.org/10.1016/j.jnnfm.2020.104451
|
On moving hypersurfaces and the discontinuous ODE-system associated with two-phase flows. Bothe, Dieter (2020), Nonlinearity, 33 (10), 5425–56. https://doi.org/10.1088/1361-6544/ab987d
|
Reflections on the article “Moving contact lines and dynamic contact angles: a ‘litmus test’ for mathematical models and some new challenges” by Yulii D. Shikhmurzaev. Bothe, Dieter (2020), The European Physical Journal Special Topics, 229 (10), 1979–87. https://doi.org/10.1140/epjst/e2020-000149-6
|
Boundary conditions for dynamic wetting – A mathematical analysis. Fricke, Mathis & Bothe, Dieter (2020), The European Physical Journal Special Topics, 229 (10), 1849–65. https://doi.org/10.1140/epjst/e2020-900249-7
|
Contact line advection using the geometrical Volume-of-Fluid method. Fricke, Mathis; Marić, Tomislav & Bothe, Dieter (2020), Journal of Computational Physics, 407, 109221. https://doi.org/10.1016/j.jcp.2019.109221
|
A comparative study of transient capillary rise using direct numerical simulations. Gründing, Dirk; Smuda, Martin; Antritter, Thomas; Fricke, Mathis; Rettenmaier, Daniel; Kummer, Florian; Stephan, Peter; Marschall, Holger & Bothe, Dieter (2020), Applied Mathematical Modelling, 86, 142–65. https://doi.org/10.1016/j.apm.2020.04.020
|
Mass transfer from single carbon-dioxide bubbles in surfactant-electrolyte mixed aqueous solutions in vertical pipes. Hori, Yohei; Bothe, Dieter; Hayashi, Kosuke; Hosokawa, Shigeo & Tomiyama, Akio (2020), International Journal of Multiphase Flow, 124, 103207. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103207
|
Unstructured un-split geometrical Volume-of-Fluid methods – A review. Marić, Tomislav; Kothe, Douglas B. & Bothe, Dieter (2020), Journal of Computational Physics, 420, 109695. https://doi.org/10.1016/j.jcp.2020.109695
|
SAAMPLE: A Segregated Accuracy-driven Algorithm for Multiphase Pressure-Linked Equations. Tolle, Tobias; Bothe, Dieter & Marić, Tomislav (2020), Computers & Fluids, 200, 104450. https://doi.org/10.1016/j.compfluid.2020.104450
|
Breakup Dynamics of Capillary Bridges on Hydrophobic Stripes. Hartmann, Maximilian; Fricke, Mathis; Weimar, Lukas; Gründing, Dirk; Marić, Tomislav; Bothe, Dieter & Hardt, Steffen (04.10.2019). https://arxiv.org/pdf/1910.01887
|
A kinematic evolution equation for the dynamic contact angle and some consequences. Fricke, Mathis; Köhne, Matthias & Bothe, Dieter (2019), Physica D: Nonlinear Phenomena, 394, 26–43. https://doi.org/10.1016/j.physd.2019.01.008
|
Highly accurate computation of volume fractions using differential geometry. Kromer, Johannes & Bothe, Dieter (2019), Journal of Computational Physics, 396, 761–84. https://doi.org/10.1016/j.jcp.2019.07.005
|
Toward the predictive simulation of bouncing versus coalescence in binary droplet collisions. Liu, M. & Bothe, D. (2019), Acta Mechanica, 230 (2), 623–44. https://doi.org/10.1007/s00707-018-2290-4
|
An extended volume of fluid method and its application to single bubbles rising in a viscoelastic liquid. Niethammer, Matthias; Brenn, Günter; Marschall, Holger & Bothe, Dieter (2019), Journal of Computational Physics, 387, 326–55. https://doi.org/10.1016/j.jcp.2019.02.021
|
Robust Direct Numerical Simulation of Viscoelastic Flows. Niethammer, Matthias; Marschall, Holger & Bothe, Dieter (2019), Chemie Ingenieur Technik, 91 (4), 522–28. https://doi.org/10.1002/cite.201800108
|
Load balanced 2D and 3D adaptive mesh refinement in OpenFOAM. Rettenmaier, Daniel; Deising, Daniel; Ouedraogo, Yun; Gjonaj, Erion; Gersem, Herbert de; Bothe, Dieter; Tropea, Cameron & Marschall, Holger (2019), SoftwareX, 10, 100317. https://doi.org/10.1016/j.softx.2019.100317
|
A continuum model of heterogeneous catalysis: Thermodynamic framework for multicomponent bulk and surface phenomena coupled by sorption. Souček, Ondřej; Orava, Vít; Málek, Josef & Bothe, Dieter (2019), International Journal of Engineering Science, 138, 82–117. https://doi.org/10.1016/j.ijengsci.2019.01.001
|
Data‐Driven Subgrid‐Scale Modeling for Convection‐Dominated Concentration Boundary Layers. Weiner, Andre; Hillenbrand, Dennis; Marschall, Holger & Bothe, Dieter (2019), Chemical Engineering & Technology, 42 (7), 1349–56. https://doi.org/10.1002/ceat.201900044
|
Experimental and numerical investigation of reactive species transport around a small rising bubble. Weiner, Andre; Timmermann, Jens; Pesci, Chiara; Grewe, Jana; Hoffmann, Marko; Schlüter, Michael & Bothe, Dieter (2019), Chemical Engineering Science: X, 1, 100007. https://doi.org/10.1016/j.cesx.2019.100007
|
Direct numerical simulation of mass transfer in bubbly flows. Deising, Daniel; Bothe, Dieter & Marschall, Holger (2018), Computers & Fluids, 172, 524–37. https://doi.org/10.1016/j.compfluid.2018.03.041
|
3D direct numerical simulations of reactive mass transfer from deformable single bubbles: An analysis of mass transfer coefficients and reaction selectivities. Falcone, Manuel; Bothe, Dieter & Marschall, Holger (2018), Chemical Engineering Science, 177, 523–36. https://doi.org/10.1016/j.ces.2017.11.02
|
Boundedness-preserving implicit correction of mesh-induced errors for VOF based heat and mass transfer. Hill, S.; Deising, D.; Acher, T.; Klein, H.; Bothe, D. & Marschall, H. (2018), Journal of Computational Physics, 352, 285–300. https://doi.org/10.1016/j.jcp.2017.09.027
|
An enhanced un-split face-vertex flux-based VoF method. Marić, Tomislav; Marschall, Holger & Bothe, Dieter (2018), Journal of Computational Physics, 371, 967–93. https://doi.org/10.1016/j.jcp.2018.03.048
|
A numerical stabilization framework for viscoelastic fluid flow using the finite volume method on general unstructured meshes. Niethammer, M.; Marschall, H.; Kunkelmann, C. & Bothe, D. (2018), International Journal for Numerical Methods in Fluids, 86 (2), 131–66. https://doi.org/10.1002/fld.4411
|
Computational analysis of single rising bubbles influenced by soluble surfactant. Pesci, Chiara; Weiner, Andre; Marschall, Holger & Bothe, Dieter (2018), Journal of Fluid Mechanics, 856, 709–63. https://doi.org/10.1017/jfm.2018.723
|
Global wellposedness for a class of reaction–advection–anisotropic-diffusion systems. Bothe, Dieter; Fischer, André; Pierre, Michel & Rolland, Guillaume (2017), Journal of Evolution Equations, 17 (1), 101–30. https://doi.org/10.1007/s00028-016-0348-0
|
Strong well-posedness for a class of dynamic outflow boundary conditions for incompressible Newtonian flows. Bothe, Dieter; Kashiwabara, Takahito & Köhne, Matthias (2017), Journal of Evolution Equations, 17 (1), 131–71. https://doi.org/10.1007/s00028-016-0352-4
|
Global strong solutions for a class of heterogeneous catalysis models. Bothe, Dieter; Köhne, Matthias; Maier, Siegfried & Saal, Jürgen (2017), Journal of Mathematical Analysis and Applications, 445 (1), 677–709. https://doi.org/10.1016/j.jmaa.2016.08.016
|
Modeling and analysis of reactive multi-component two-phase flows with mass transfer and phase transition the isothermal incompressible case. Bothe, Dieter & Prüss, Jan (2017), Discrete & Continuous Dynamical Systems – S, 10 (4), 673–96. https://doi.org/10.3934/dcdss.2017034
|
Colliding drops as coalescing and fragmenting liquid springs. Planchette, C.; Hinterbichler, H.; Liu, M.; Bothe, D. & Brenn, G. (2017), Journal of Fluid Mechanics, 814, 277–300. https://doi.org/10.1017/jfm.2016.852
|
Highly accurate two-phase species transfer based on ALE Interface Tracking. Weber, Paul S.; Marschall, Holger & Bothe, Dieter (2017), International Journal of Heat and Mass Transfer, 104, 759–73. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.072
|
Advanced subgrid-scale modeling for convection-dominated species transport at fluid interfaces with application to mass transfer from rising bubbles. Weiner, Andre & Bothe, Dieter (2017), Journal of Computational Physics, 347, 261–89. https://doi.org/10.1016/j.jcp.2017.06.040
|
A unified single-field model framework for Volume-Of-Fluid simulations of interfacial species transfer applied to bubbly flows. Deising, Daniel; Marschall, Holger & Bothe, Dieter (2016), Chemical Engineering Science, 139, 173–95. https://doi.org/10.1016/j.ces.2015.06.021
|
Numerical and experimental analysis of local flow phenomena in laminar Taylor flow in a square mini-channel. Falconi, C. J.; Lehrenfeld, C.; Marschall, H.; Meyer, C.; Abiev, R.; Bothe, D.; Reusken, A.; Schlüter, M. & Wörner, M. (2016), Physics of Fluids, 28 (1), 12109. https://doi.org/10.1063/1.4939498
|
A subgrid-scale model for reactive concentration boundary layers for 3D mass transfer simulations with deformable fluid interfaces. Gründing, Dirk; Fleckenstein, Stefan & Bothe, Dieter (2016), International Journal of Heat and Mass Transfer, 101, 476–87. https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.119
|
Numerical study of head-on droplet collisions at high Weber numbers. Liu, Muyuan & Bothe, Dieter (2016), Journal of Fluid Mechanics, 789, 785–805. https://doi.org/10.1017/jfm.2015.725
|
Applicability of the linearized theory of the Maxwell-Stefan equations. Weber, Paul S. & Bothe, Dieter (2016), AIChE Journal, 62 (8), 2929–46. https://doi.org/10.1002/aic.15317
|