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Introduction

The time evolution of many concrete processes from various fields like physics, chemistry,
biology and engineering sciences is governed by nonlinear partial differential equations which

admit an abstract formulation as evolution problems of the type
u' + Au s f(t,u) on J=[0,T], u(0)=ug (0.1)

in an appropriate (infinite dimensional) Banach space X, where A is an m-accretive (especially
nonlinear and possibly multivalued) operator and f : D(f) C J x X — X is a nonlinear
reacting force.

An important class of applications that falls into this scope is given by certain systems
of reaction-diffusion equations, and some of the special features, concerning the settings in
which (0.1) will be considered, are motivated by such applications as follows. In particular if
chemically reacting systems are modeled then diffusion has to be taken into account. Since
chemical reactions are often performed inside catalytic pellets of high porosity, diffusion will

usually be nonlinear. This leads to reaction-diffusion systems of the form

ou .
= Aen(u) +gr(ur, ) i (0,T) x 0
enlur) _ on (0,T) x (0-2)
ov
uk(0,-) = ug in Q
for Kk = 1,...,m in a bounded domain Q@ C R", in simple cases. Here u; denotes the

concentration of a certain species, and the functions ¢, : R — R are continuous, strictly
increasing with ¢ (0) = 0. This includes the case ¢(r) = r|r|?~! with v > 0 encountered
in the porous medium equation. In this situation the operators Ayv = —Apg(v), say with
homogeneous Neumann boundary conditions, are m-accretive in L!(Q), hence the system (0.2)
admits an abstract formulation as (0.1) in X = L'(Q2)™. The function g in (0.2) describes the
kinetics of the underlying system of chemical reactions.

In the simplest case m = 2 the reaction term g is typically of the type

9(y1,92) = (—phi(y1)ha(ya), —Auhi(y1)h2(y2))

with A € R, p > 0 and continuous hj : R4+ — R. For example, a single irreversible isothermic
reaction A + B — P between two chemical species A and B is usually modeled by means
of the Freundlichs kinetics, which corresponds to hj(s) = 5%, hy(s) = s% with a, 8 > 0 and
A > 0; here the reaction is said to have order « and 3 with respect to A and B, respectively.
The case of a single irreversible exothermic reaction A — P of order « leads to hy(s) = s* and
ha(s) = exp(—%) with @, E; R > 0 and A < 0. In this example u; denotes the concentration

of A and us means temperature.



In many cases the order of a reaction is not known from theoretical considerations but has
to be determined on the basis of measurements. This often leads to fractional values and
in particular o, 8 < 1 are possible, in which case g is merely continuous. Actually, there
are situations where the kinetics of a chemical reaction corresponds to order zero, which is
modeled by means of the Heaviside function, i.e. h;(0) = 0 and hy(r) = 1 for » > 0 in
the examples above. This is the simplest situation where reaction-diffusion systems with
discontinuous nonlinearities arise; other examples will be given later.

Ordinary differential equations with discontinuous right-hand side need not have (abso-
lutely continuous) solutions. A typical example is ' = g(y) on [0,1] with g(r) = —sgnr
for r # 0 and ¢g(0) = 1, say. Notice that if y is a solution with initial value y(0) = 0, then
ly|" = y'sgny < 0 a.e. implies y(¢) = 0 on [0,1], but y = 0 is not a solution. A common way
to overcome this difficulty is to replace the discontinuous g by an appropriate multivalued
“regularization” G, which is obtained from g by filling in the gaps at points of discontinuity.
Then, in the situation of (0.2), a partial differential inclusion results, the abstract formulation
of which is given by

u € —Au+ F(t,u) on J, u(0) = uo, (0.3)

where F : D(F) C J x X — 2%\ {0} is a multivalued mapping.

Another feature in the kind of applications mentioned above is that only nonnegative
solutions are meaningful due to the physical background. Moreover, if such a reaction-diffusion
system is considered as an abstract evolution problem, the nonlinear reacting force is only
defined on “thin” subsets of X, for example L>®-bounded subsets of L'(2), unless the reaction
term satisfies strong and often unrealistic growth conditions. Therefore, one is often interested
in solutions of problem (0.1) or (0.3) that satisfy additional constraints of the type u(t) € K
for certain subsets K C X.

Consequently, we study nonlinear evolution problems of type (0.1) and (0.3) in infinite
dimensional Banach spaces with emphasis on cases when the nonlinear reacting force is only
defined on a closed subset of J x X and is merely continuous or Carathéodory in the single-
valued case corresponding to (0.1), or satisfies a condition of upper semicontinuous type if
(0.3) is considered. Based on compactness arguments we establish existence of solutions and
provide further qualitative results like existence of solutions under time-dependent constraints
or existence of periodic solutions, which are then applied to systems of the form (0.2) and to
more complicated related models.

In the sequel, the nonlinear reacting force f (respectively F') will often be called a

‘per-
turbation” for simplicity, although this notion is not justified in the strict sense; in particular
it will not be assumed that f is “small” compared to A.

The study of problem (0.3) certainly requires a combination of the different techniques
that have been developed for evolution equations governed by m-accretive operators (i.e. the

case F' =0 or F(t,z) = {f(t)}), respectively for differential inclusions in Banach spaces (i.e.



the case A = 0). In these special cases many aspects concerning existence and qualitative
properties of solutions are well understood, and the preliminary Chapter 1 provides a compi-
lation of known facts that are needed for the present work.

In Chapter 2 we are concerned with existence and qualitative theory in the abstract setting
of (0.1) and (0.3). We start with the problem of existence of mild solutions in case that the
perturbation is defined on all of J x D(A). This is the subject of §3 where we concentrate
on initial value problem (0.3) with a multivalued perturbation F with closed convex values
such that F(-,z) admits a strongly measurable selection and F'(,-) is weakly upper semicon-
tinuous; notice that (0.1) with Carathéodory f is a special case. Here u € C(J; X) is called

a mild solution of (0.3) if
u=3S8w forwe L'(J; X) with w(t) € F(t,u(t)) a.e. on J,
where Sw denotes the mild solution of the quasi-autonomous problem
o'+ Au 3 w(t) on J, u(0) = ug

associated with A. Hence u is a mild solution of (0.3) iff u is a fixed point of G := S o Sel,
where Sel : C(J; X) — 2L (%) g given as

Sel (u) = {w € LY(J; X) : w(t) € F(t,u(t)) a.e. on J}.

It is therefore natural to try a fized point approach in order to obtain existence of solutions,
but one has to be careful since (0.3) need not have a solution even in finite dimensions. This
is shown by Example 3.1, where the main point is that wy — w in L'(J; X) and Swy, — u in
C(J; X) does not imply Sw = u. Consequently, all subsequent results especially depend on
assumptions that guarantee certain properties of the solution operator S, which then allow
to overcome this difficulty. Of course such properties of S in turn rely on properties of A
and X and, e.g., the problem mentioned above disappears if X* is uniformly convex. In this
situation the fixed point approach works if we find a compact convex K C C(J; X) such that
G(K) C K. Existence of a closed bounded convex Ky with G(Ky) C Ky follows if F' has
at most linear growth in z, and we then impose a certain compactness assumption on A or
F to obtain the compact set K. In case the semigroup generated by —A is compact such
a compact convex K is easily obtained since G(Kj) is relatively compact then (which gives
Theorem 3.1), while additional effort is needed if the semigroup is only equicontinuous and F'

satisfies the compactness condition

B(F(t, B)) < k(t)3(B) on J with k € L'(J) for bounded B C D(A),

where (3 denotes the Hausdorff-measure of noncompactness. Here the main point is to establish

the estimate (Lemma 3.7)
SUSw)0) k2 1) < [ llun(s) k= 1)) ds,
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which holds for (wy) C L'(J; X) such that |wy(t)] < ¢(t) a.e. on J with ¢ € L'(J), if X*
is uniformly convex; without additional assumptions on X this “G-formula” may break down
as shown by Example 3.2. By means of this inequality, existence of mild solutions for such
perturbations “of compact type” is obtained in Theorem 3.4.

There are other relevant special cases in which the operator S is such that the fixed
point approach works in general Banach spaces, namely if A is linear, densely defined and
m-accretive, or if A is everywhere defined, continuous and accretive. Actually, existence of
mild solutions can be obtained if A is a “semilinear” operator of the type Au = Agu + g(u),
where Ay : D(Ag) C X — X is linear, m-accretive with D(Ag) = X and g : X — X is
continuous and accretive. This is done in Theorem 3.5, and an extension to time-dependent
Carathéodory g is given in Theorem 3.6. The latter relies on Theorem 3.2 which in particular
covers the case of dissipative Carathéodory perturbations of m-accretive operators in a general
Banach space.

If constraints are present a fixed point approach is not possible, and then one main step
consists in obtaining appropriate approximate solutions. This is the starting point of §4 where
we concentrate on the single-valued case, i.e. on problem (0.1). To gain more flexibility for
later applications, we allow for time-dependent constraints of type u(t) € K(t) on J where
K :J — 2%\ {0} is a given “tube”, which of course requires a certain “subtangential condi-
tion” on the boundary of the graph of K. In Lemma 4.1 we use Zorn’s lemma to establish
existence of a carefully chosen type of approximate solutions under a necessary subtangential
condition. Based on this result we obtain existence of so-called viable solutions (i.e. solutions
staying in gr (K)) if f is locally Lipschitz continuous (Theorem 4.1), or f is continuous and
a compactness condition of one of the types mentiones above is satisfied (Theorem 4.2 and
Theorem 4.3). For fixed constraints, i.e. K(t) = K, a refinement of the type of approximate
solutions is possible (Lemma 4.3), which then allows to extend the above results to the case
when f is Carathéodory (Theorem 4.4 and Theorem 4.5). Since the necessary subtangential
condition is hard to check in practice, we also provide stronger sufficient conditions.

By means of the techniques given in §4 it is then clear how corresponding results for multi-
valued perturbations can be obtained, and a sample for e-d-usc F' is Theorem 4.6.

As a consequence of the fact that compactness conditions are used to obtain existence of
solutions (unless the nonlinear reacting forces are locally Lipschitz or satisfy a dissipativity
condition), the set of all solutions is a compact subset of C'(J; X) in all the situations men-
tioned above. On the other hand, especially initial value problem (0.3) can have a “large”
solution set and it is therefore of interest to obtain further information concerning the struc-
ture of this set. This is the first subject in §5 where we show that, in particular, the solution
set of (0.3) is a compact Rs-set (and hence connected) within the settings considered in §3;
see Theorem 5.1 and Theorem 5.2.

In §5.2 we provide sufficient conditions for the existence of T-periodic solutions of (0.1)



in a given closed set K C X in case f is T-periodic and Carathéodory, where we concentrate
on two different settings: X is a general Banach space and f satisfies a stronger separated
subtangential condition (Theorem 5.3), or X and X* are uniformly convex, K has nonempty
interior and f satisfies an explicit subtangential condition on K N D(A) which is a necessary
condition if A is single-valued (Theorem 5.4).

We close this “abstract” chapter with a section on sums of accretive operators, where the
main result (Theorem 5.5) extends the well-known fact that A + F with m-accretive A and
continuous and accretive F' : X — X is m-accretive, to the case of upper semicontinuous F
with compact convex values.

A large part of Chapter 3 is devoted to applications of the abstract theory to reaction-

diffusion systems like (0.2). In §6 we first draw some immediate consequences from the
results concerning existence and viability. In particular we show how common invariance
techniques that are well-known in the semilinear case, like invariant rectangles in combination
with quasimonotonicity or contracting rectangles, carry over to the fully nonlinear setting; see
Theorems 6.1 and 6.2 as well as Proposition 6.1. We also consider systems with discontinuous
nonlinearities, modeled as partial differential inclusions as explained above, where the main
result (Theorem 6.3) establishes the existence of (local) nonnegative solutions under natural
assumptions.
For a concrete process, say from chemical engineering, the resulting mathematical model is
of course more complicated than (0.2). In §6.3 we consider a more realistic model for a
standard process from heterogeneous catalysis where, in addition to nonlinear diffusion and
reaction inside €2, macroscopic convection and reaction inside the surrounding bulk phase as
well as interfacial mass transport is taken into account. Since such processes are sometimes
operated in a periodic manner (i.e. the feeds are varied periodically) in order to increase the
performance with respect to conversion or selectivity, the problem of existence of a T-periodic
solution appears naturally. Theorem 6.4 provides existence of T-periodic and stationary
solutions under fairly realistic assumptions. The main ingredient for the proof of this result
is a certain compactness property of the semigroup generated by the pde-part (Lemma 6.4),
where the latter is similar to Ap(v) but with an additional component and a nonstandard
boundary condition.

Given a system of chemical reactions it is likely that some of the reactions take place at
a considerably higher rate than the remaining ones, in particular if ionic or radical reaction
mechanisms are involved. Intuitively, the fast reactions will be close to their equilibrium
position, which means that the vector of all concentrations evolves in the neighborhood of
a certain “limiting manifold”, additionally driven by the influence of feeds and slow reac-
tions. Then a common approach in chemical engineering is to consider the fast reactions as
instantaneous ones, i.e. to assume that the system is in steady state with respect to all fast

reactions; in this context one speaks of “the instantaneous reaction limit”. In the remaining



part of Chapter 3 this approach is justified in several different situations by means of rigor-
ous convergence results. Of course an important first step in order to solve these particular
singular limit problems is to study the ideally mixed case with macroscopic convection. In
this situation the reaction-diffusion system reduces to a system of ordinary differential equa-
tions with a large parameter £ > 0 which refers to the reaction speed. In §7.1 we consider a
concrete systems of concurring irreversible reactions in the ideally mixed case (Example 7.1)
where the reaction term turns out to be accretive in /'-norm. Based on perturbation results
for nonlinear semigroups we obtain convergence of solutions, as k tends to infinity, to the
solution of a discontinuous limiting problem.

If the fast irreversible reactions take place in the bulk phase of a more complicated two-
phase process, then the limiting problem is a reaction-diffusion system with additional discon-
tinuous nonlinearities. In the abstract formulation this leads to a nonlinear evolution problem
of type (0.3), again.

In §7.2 we consider the instantaneous reaction limit for a single irreversible reaction be-
tween two diffusive species and use nonlinear semigroup theory to obtain convergence of the
solutions as k — 0o to the solution of a free boundary problem (Theorem 7.1). In particu-
lar, this result shows that limiting problems with nonlinear diffusion of the type Ap(v) arise
naturally in the instantaneous limit, even if the original system with finite reaction speed is
semilinear.

In case of fast reversible reactions the passage to the limiting case of infinite reaction speed
is more difficult in so far that the reaction part is not accretive. Here we concentrate on the
ode-case corresponding to the situation when the chemical reactions are performed inside a
continuously stirred tank reactor. We characterize the limiting equation and, by means of
Lyapunov functions techniques, we are able to prove convergence of solutions for a general
system of fast independent reactions (Theorem 8.2).

Finally, we consider a reversible reaction A + B &= P of diffusive species and solve the
corresponding singular limit problem in the special case of equal diffusion coefficients (Theo-
rem 8.3). Due to the strong extra assumptions this result is just a starting point for future

work.



Chapter 1

Accretivity and Upper Semicontinuity

This chapter provides several basic concepts and results from nonlinear functional analysis
that are fundamental to the subsequent study of evolution problems of the type described in

the introduction.

81 Accretive Evolution Equations

The purpose of this preliminary paragraph is to provide several known facts from the theory of
accretive operators and nonlinear semigroups. For proofs of these facts we refer to Barbu [14],
Benilan/Crandall/Pazy [17] or Miyadera [85] unless an explicit reference is given. Additional

information will be given at the appropriate places later on.

1.1 Basic notation

Throughout this work the following notation will be used. X will always stand for a Banach
space with norm | - |, 2% denotes the subsets of X and 2% \ () is short for 2% \ {#}. Then
B, (z) denotes the closed ball in X with center z and radius r, B,(z) its interior and p(z, A)
the distance from z to the set A C X. For A C X we let A, fol, 0A be the closure, interior
and boundary of A, respectively. We also let ||A|| = sup{|z| : © € A}. The convex hull of
A C X, i.e. the smallest convex set containing A, is denoted by conv A, while span A is the
smallest linear subspace of X containing A. The closure of these sets are denoted as conv A
and span A, respectively. For z € X, A, B C X and X € R we define

A+AB={a+X:ac Abe B} and z+ B ={z}+ B.
Given A, B € 2% \ () we let
dH(AaB) = max{supp(x,B),supp(x,A)}.
A B

Then dy is a metric on the closed bounded subsets of X, the so-called Hausdorff-metric.



If an operator A : X — 2% (an operator A in X for short) is given, we let
DA) ={zeX: Az #0}, RA)= |J Az

z€D(A)

and
gr(A) ={(z,y) : z € D(A),y € Ax}

denote the domain, range and graph of A, respectively. We will occasionally identify A with
its graph to simplify the notation; so, for example, (z,y) € A means x € D(A) and y € Az.
An operator A is said to be single-valued if Az is a singleton for every z € D(A).

Given J = [0,a] C R, we let C(J; X) denote the Banach space of all continuous functions
v :J — X and L'(J;X) be the Banach space of all equivalence classes (with respect to
equality almost everywhere) of strongly measurable, Bochner-integrable w : J — X, both

equipped with the usual norms, i.e.
a
lulo = max|u(f)] and |w], = / ()| dt,
teJ 0

respectively. In case X = R we simply write C(J) and L!(J).

1.2 Accretive operators
An operator A in a real Banach space X is said to be accretive if
e —Z| <|z—ZT+ Ay —7)| forall A\ >0, z,7 € D(A),y € Ax,y € AT,

while A is said to be w-accretive (with w € R) if A+wl is accretive, where I : X — X denotes
the identity. An operator A is dissipative iff —A is accretive.
There are equivalent definitions of accretivity that are more appropriate to check whether

a given operator has this property. The subsequent formulation is based on the duality map
F: X — 2%\ () (where X* denotes the dual space of X) given by

F(z) ={z* € X*: 2*(z) = |z|* = |z*|*}.
By means of F the semi-inner products (-,-)+ in X are defined as
(y,2)+ = max{z"(y) : 2" € F(z)}, (y,2)- =min{z"(y) : 2" € F(2)}

or, equivalently,

ezt byl gl e
(,2)+ = laf tim EEEL () < o] tim

|z — |z — hy|
—04 —0-+ h '

With this notations an operator A in X is accretive iff

(y—7g,x—T)y >0 forallz, T€ D(A), y € Az and j € AT.



Instead of (-,-);+ we will sometimes use the bracket, defined by

|z + hyl — |=|

[xﬂ y] = lim 7

h—0+ h

evidently A is accretive iff
[t —T,y—7g] >0 forallz, T€ D(A), y € Az and j € AT.

If A has this property then its resolvents Jy := (I +AA)~! are single-valued and nonezpansive
mappings for every A > 0, i.e. Jy : R(I + AA) — D(A) satisfies |Jyz — J)\Z| < |z — Z|. This is
clear by the first definition of accretivity above, and in fact the converse also holds. The next
result collects some properties of Jy that are important in the sequel. For simplicity, we only
consider the case when A is m-accretive. The latter means that A is accretive and satisfies
R(I + MA) = X for all (or, equivalently, for some) A > 0. We say that A is m-w-accretive
(with w € R) if A+ wI is m-accretive, and then R(I + AA) = X holds for all A > 0 such that
Aw < 1.

Proposition 1.1 Let A be m-accretive in a real Banach space X and Jy denote the resolvents
of A. Then the following holds.

(a) Jy: X — D(A) is nonexpansive for every X > 0.

(b) |z — Jaz| < Ay| for all A\ >0, x € D(A) and y € Ax.

(¢) The Jy satisfy the resolvent identity, i.e.

>\_
JA:JM(§I+ /\“

(d) Let xg € D(A), yo € Azg and A\ >0 for k=1,...,n. Then

Jy)  for all A\, > 0.

n
| In, In, 1 I — x| < 2|z — 20| + Z Melyo| for all z € X.
k=1

The following prototype of a (multivalued) m-accretive operator in X = R will be important
in the sequel.

1 ifr>0
Sgn : R — 28\ with Sgn(r)=<¢ [~1,1] ifr=0
-1 if r <O0.

In this one-dimensional case an m-accretive operator is often called a mazimal monotone

graph in R. Another example which plays a role in Chapter 3 is given by
B:R— 28\ 0 with D(B) = {0} and S(0) = R.

Let us also mention that every m-accretive operator A is automatically mazimal accretive,
i.e. A does not admit a proper accretive extension; the converse is (in general) false.



It is sometimes of advantage to approximate an m-accretive operator A by means of the so-
called Yosida approzimation Ay = A\~'(I — Jy) with A > 0. By means Proposition 1.1 it is
obvious that A is single-valued, everywhere defined and Lipschitz of constant 2/\. It is also
not difficult to see that Ay is m-accretive with Ayxz € AJyx on X. Further properties of Ay
can be found in the references mentioned above, but will not be needed here.

If A satisfies the stronger condition

(y—7g,x—x)- >0 forallz, T€ D(A), y € Az and § € Az,

then A is called s-accretive. This property is in particular important if sums of accretive
operators are encountered; notice that A+ B is accretive if A is accretive and B is s-accretive.

In this context the following result is of interest.

Proposition 1.2 Let X be a real Banach space and f : X — X be continuous and accretive.

Then f is s-accretive.

Because of the closed relationship between accretivity and the duality map it is not surprising
that certain properties of F and (-,-)+ are important later on, in particular if we consider
special Banach spaces with additional smoothness properties. Recall that X is uniformly
convez if for every e € (0,2] there exists 6 = d(e) > 0 such that |z| = |y| =1 and |z —y| > €
implies |(z + y)/2] < 1 — 4§, while X is strictly convez if |z| = |y| = 1 and = # y implies
Az + (1 — N)y| < 1 for all X € (0,1).

Proposition 1.3 Let X be a real Banach space and F : X — 2%\ () the duality map. Then
(a) F(x) is conver and o(X*, X)-closed with F(Az) = AF(z) for all X € R.

(b) F is single-valued iff X* is strictly convez.

(c) If X* is strictly convex then F is continuous from (X,|-]) to (X*,o(X*, X)).

(d) X* is uniformly convez iff F : X — X* is uniformly continuous on bounded sets.

For a proof see e.g. Proposition 12.3 and Theorem 12.2 in Deimling [41]. The following
properties of (-, )+ are contained in Proposition 13.1 of the same reference.

Proposition 1.4 Let X be a real Banach space. Then

(0) (@,2)0 + (15,2) < (@ +5, ) < (5, 2)2 + (1, 2)5 and |(5,9)5] < |l [y], (2 + 0y, y)s =
(z,y)+ + aly|? for a € R, (az,By)+ = af (z,y)+ for aB > 0.

(b) (-y-)+ is upper semicontinuous, (-,-)— is lower semicontinuous and (-,y)+ 18 continuous.

(¢) If X* is uniformly convex then (-,-)+ = (-,+)_ is uniformly continuous on bounded subset
of X x X.

(d) If © : (a,b) — X is differentiable at t € (a,b) then ¢(-) = |z(-)| satisfies

p(t)D"p(t) = («'(t),2(t)) - and @)D (t) = (z'(t),z(t))+,
where
o = T ) et =h) _— p(t+h) =)
D= P = T T

are the Dini-derivatives of .

10



Let us mention some immediate consequences of Proposition 1.3 concerning m-accretive oper-
ators. If X* is uniformly convex and A is m-accretive in X then Az is closed convex for every
z € D(A) and A is demiclosed which means that (z,) C D(A) with z,, = z and y, € Az,
with y,, — y implies z € D(A) and y € Az. The former property implies that the so-called
minimal section A® of A, defined by

Az = {y € Az : |y| = p(0, Ax)},

is nonempty on D(A) in this case, and A® is single-valued if, in addition, X is strictly convex.
Let us also note that D(A) is a convex set if A is m-accretive in a real and uniformly convex
Banach space.

In many concrete applications the Banach space under consideration is equipped with a
natural partial ordering <. In this situation it is often important to know whether a given
operator “respects” this ordering, a question that leads to the concept of T-accretivity. Recall
that (X,]|-|, <) is called a Banach lattice if X+ = {x € X : > 0} is a closed convex cone such
that z Ay := inf{z,y} and z V y := sup{z,y} exist for all z,y € X, and z V (—z) < y V (—y)
implies |z| < |y|. In this case 2T denotes x V 0 and z~ is short for —(z A 0) = (—z)". Given

a Banach lattice (X, |- |, <), an operator A in X is said to be T-accretive if
(z —2)"| <|(z—T+ My —75))"| forall A >0, 2,7 € D(A),y € Az,y € AZ.
An equivalent formulation is given by
[t —T,y—7ly >0 forallz,7 € D(A),y € Az,y € AT,
where [, -] is defined by

_ o @+ hy) T -
[yl = hlgtl)qu h '

If A has this property then the resolvents of A are single-valued and order-preserving; the
latter means Jyz < J)Z for all A > 0 and z,7 € R(I + AA) whenever z < Z. Given that A is
m-accretive, then A is T-accretive iff the resolvents of A are order-preserving.

In the sequel two special cases will be particularly important, namely X = R'" equipped
with the usual componentwise ordering and X = L'(£2)™ where we always consider the partial
ordering induced by X := L'(Q;R7) = {u € X : ug(z) > 0 ae.on Qfor k = 1,...,m}.
In both situations computation of [-, -] is especially simple if the right norms are chosen, for
example |u| = |uy|; + ...+ |um|1 in case of X = L'(Q2)™. Observe that it is then sufficient to
know [-,-]4 for m = 1, and in this case we have

b ifa>0
[0, = max (H(a)b) ={ b+ ifa=0 if X =R,
0 ifa<o
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where H denotes the Heaviside function with H(0) = [0, 1], as well as
[u,v]+ = max (/ H(u)v dm) = / vtdr + vdz if X = LY(9),
Q {u=0} {u>0}

where H (u) is short for {w € L}(Q) : w(z) € H(u(z)) a.e. on Q}.

Let us also note that T-accretivity implies accretivity in the special cases just mentioned.
In fact this implication is valid in any Banach lattice (X, |- |,<) having the property that
27 < |y*| and |2| <y~ | implies |z] < y].

1.3 Quasi-autonomous problems

The study of nonlinear perturbations of accretive evolution problems certainly requires con-

siderable knowledge about the simpler quasi-autonomous problem

'+ Au 3 w(t) on J =[0,a], u(0)= ug (1)

with w € LY(J; X) and ug € D(A). A function v : J — X is called a strong solution of (1) if u
is absolutely continuous with u(0) = uo and almost everywhere (a.e. for short) differentiable
on J such that the inclusion in (1) is satisfied for almost all ¢ € J. Now if A is m-accretive
in X one cannot expect (1) to have a strong solution, even if A is linear and densely defined,
w is continuous and ug = 0; see Webb [114] for a counter-example in this setting. It may for
example happen that the right candidate u for a solution of (1) is Lipschitz continuous but
nowhere differentiable. The latter is not possible if X has the Radon-Nikodym property (RNP
for short), since this property is equivalent to a.e. differentiability of all absolutely continuous
functions u : J — X; recall that every reflexive Banach space has the RNP.

For this reason we employ the following concept of a mild solution of (1). A continuous
function u : J — D(A) with u(0) = uy is said to be a mild solution of (1) if w is the uniform

limit of e-DS-approximate solutions u¢ as ¢ — 0+. Here, by an e-DS-approximate solution
u® of (1) one means a step function u® with u®(t9) = wo and u®(t) = uy on (tx_1,1%x| for
k=1,...,m,where 0 =t <t1 < - - <ty <a<t,+ewith ty —tr_1 < e and the uy solve
the implicit difference scheme

Up — Up_
M%—Aukazk fork=1,...,m
by — g1

m th
with z1,..., 2z, € X such that Z/ |z —w(t)] dt < e.
k=1 tp—1

While the concept of mild solutions is of particular importance for theoretical purposes, it
is almost impossible to check in practice whether a given v € C(J; X) is a mild solution. At
this point it is useful to introduce still another type of solutions of (1) which is also helpful

to obtain uniqueness of mild solutions and for the study of regularity questions. A function

12



u € C(J;X) with u(0) = ug is called an integral solution of (1) if the following family of
inequalities is satisfied:

lu(t) — z| < |u(s) — x| + /St[u(T) —z,w(T) —yldr forall0<s<t<a,(zr,y) €A

In the case when A is m-accretive, which will most often be satisfied in the situations to be
considered later, the concepts of mild and integral solutions of (1) coincide. The next result

collects several facts concerning the quasi-autonomous initial value problem.

Theorem 1.1 Let A be m-accretive in a real Banach space X, w € L*(J; X) with J = [0,a] C
R and ug € D(A). Then (1) has a unique mild solution u and every sequence of corresponding
em-DS-approzimate solutions u‘™ converges to u uniformly on [0, a) if €, — 0+. Furthermore
u 18 the unique integral solution of (1). Let u and u be mild solutions of (1) for right-hand

sides w,W € L'(J; X) and initial values ug,To, respectively. Then
lu(t) —a(t)] < |u(s) —a(s)| + /t[U(T) —u(r),w(r) —w(r)]dr forall0<s<t<a, (2)
s
i particular
u(t) ()| < Ju(s) ~ ()] + [ fwlr) ~ T dr for 0<s <t <a
s

It is not difficult to check that (2) is equivalent to

lu(t) —a(t)]? < |u(s) —a(s)[? +2/t(w(7) —w(7),u(t) —u(r))4+dr forall0 <s<t<a. (3)

In the situation of Theorem 1.1 we let Sw denote the mild solution of problem (1), i.e.
S:L'(J;X) — C(J; X) is the solution operator of the quasi-autonomous problem associated
with A. Then, as a consequence of Theorem 1.1, S is well-defined and a nonexpansive map.
Additional properties of this operator will be obtained in Chapter 2 below, and play a crucial
role in the subsequent study of nonlinear evolution problems.

Let us also record the following result on regularity of mild solutions.

Theorem 1.2 Let A be m-accretive in a real Banach space X and J = [0,a] C R. Given
ug € D(A) and w € L'(J; X), let u be the mild solution of (1). Then u is the strong solution
of (1) iff u is absolutely continuous and a.e. differentiable on J. In particular, u is the strong

solution of (1) if u is Lipschitz continuous and X has the RNP.
If » is a mild solution of the autonomous initial value problem
w4+ Au>0 on Ry, u(0)=ug (4)

with m-accretive A, then w is Lipschitz continuous iff ug belongs to the generalized domain
D(A) = {z € X : |z|4 < oo} of A and then |ug|4 is a Lipschitz constant for u(-); here | - | is
defined by

|z|4 = rl_i)r(l)q+ inf{|y| : y € A% for some T € B,(z) N D(A)}.
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Hence a mild solution u of (4) with ug € D(A) is in fact a strong solution if X has the RNP.

More can be said if ug belongs to D(A) and X enjoys additional smoothness properties.

Theorem 1.3 Let X be a real Banach space such that X and X* are uniformly convex. Let
A be m-accretive in X, ug € D(A) and u be the mild solution of (4). Then u(t) € D(A) on
R, u(t) has a derivative u! (t) from the right at every t > 0, and u! (-) is continuous from
the right and satisfies

u'y (t) + A%u(t) =0 on Ry,

where A%z denotes the unique element of minimal norm of Azx.

Let us note that all results given in the present section remain valid for m-w-accretive A,

except that the inequalities in Theorem 1.1 have to be modified. For example (2) becomes

) = (0] < u(s) —s) + [ futr) ~ () dr + [ Tu(r) ~ () wier) —w(r)]

for0<s<t<a.

1.4 Nonlinear semigroups

Let X be a real Banach space and ) # D C X. A family (S(t));>0 of functions S(¢) : D — D
is called a semigroup of nonexpansive mappings on D if

S(t+s)=S5()S(s) fort,s >0, S(0)=1I, 1tliIOnJrS(t):v::v on D
—

and
|S(t)x — S(t)Z| < |z —=| forallt >0 and z,Z € D.
In this case the map (¢,z) — S(t)x is jointly continuous from R x D into D.
Now if A is an m-accretive operator in X, then there is a particular semigroup (S(t)):>o0

on D(A) associated with A, which is given by the exponential formula

S(t)z = nll)rgo Jijpz fort>0and z € D(4),

where the convergence is uniform for ¢ from bounded subsets of R.. In this situation (S(%));>0
is called the semigroup generated by —A, and the function u(t) = S(t)ug with ug € D(A) is
the mild solution of the autonomous problem (4). Actually, this also holds if A is accretive

and satisfies the range condition

R(I+XA) D> D(A) for all small A > 0.

In the sequel we simply speak of a semigroup and write S(t) instead of (S(t))>0.

A semigroup S(t) of nonexpansive mappings on D C X is said to be compact if S(t) is
a compact map for every ¢ > 0, i.e. if S(¢)B is relatively compact in X for all ¢ > 0 and
bounded B C D, while S(¢) is said to be equicontinuous if the family of maps {S(-)z : z € B}
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is equicontinuous at every ¢ > 0 for all bounded B C X. If A is m-accretive then the semigroup
S(t) generated by —A is compact iff S(¢) is equicontinuous and A has compact resolvents.
Let us add a few remarks concerning the linear case. Suppose that A is m-accretive, linear
and densely defined, and let S(¢) be the semigroup generated by —A. In this special case
S(t) is also called the Cy-semigroup generated by —A, and the maps S(¢) are bounded linear
operators on X. Then the semigroup is equicontinuous iff S(¢) is continuous in the uniform
operator topology for ¢ > 0. If w € L'(J; X) and u is a strong solution of (1), then it is easy

to check that u satisfies the variation of constants formula, i.e.
t
u(t) = S(t)uo +/ S(t—s)w(s)ds on J. (5)
0

In the theory of linear evolution equations a mild solution u of (1) is usually defined by means
of this formula, and the following result states that this concept of mild solutions coincides

with the one defined above.

Proposition 1.5 Let X be a real Banach space and A be a linear, m-accretive and densely
defined operator in X. Then u is a mild solution of (1) iff u satisfies the variation of constants
formula (5).

For more information concerning the linear case we refer to Goldstein [60] and Pazy [93].

Let us finally provide some information concerning perturbations of nonlinear semigroups.
For this purpose we need the following notation: if (Ag)x>o is a family of operators in a
Banach space X, then hkm inf Ay, is defined by (z,y) € hm 1ank if there are (z,yy) € Ay for
every k > 0 such that z; — x and y; — y.

Theorem 1.4 Let X be real Banach space, (Ay)r>o be a family of w-accretive operators in
X with the same w € R, and Ay, C likm inf Ag. Suppose that there exist mild solutions vy of
— 00

uly(t) + Apug(t) 20 on Ry, ug(0) = ul
for every k >0, as well as a mild solution us of
ul () + Aoctino(t) 20 on Ry, uxo(0) = ud’.

Then uy € D(Ag) with ug — e € D(Aoo) tmplies ug(t) = usc(t) on Ry, where the conver-

gence is uniform on bounded sets.

Recall that existence of the mild solutions u; and us is guaranteed if all Ay as well as Ay
satisfy the range condition, i.e. if for instance R(I+MXAs) D D(Ay) for all A > 0 with dw < 1.
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82 Upper Semicontinuous Differential Inclusions

We continue with the compilation of known facts concerning set-valued operators, but here the
emphasis is on continuity properties of such multivalued mappings. As before we concentrate
on notations and results that are needed in the sequel; more details and further information
can be found in Aubin/Cellina [8] and Deimling [42]. For proofs we also refer to these books,

unless an explicit reference is given.

2.1 Upper semicontinuity

Let X,Y be Banach spaces and ) # Q C Y. A mapping F : Q — 2X is called a multivalued
map (or, simply, a multi) with values F(w) C X, and we keep the notations of the domain,
range and graph of F. A single-valued f : Q@ — X with f(w) € F(w) on Q is called a selection

of F. Here we also need the concept of the “inverse” F~! which is defined by
FH A) ={weQ: Flw)NA#0 for AC X;

A multivalued map F : Q — 2% \ () is called upper semicontinuous, usc for short, if F~1(A)
is closed in 2 whenever A C X is closed; remember that “€g closed in 2” means Qg = ANQN
for some closed A CY. A multi F: Q — 2%\ () is said to be e-6-usc if for every wy € 2 and
€ > 0 there exists 0 = d(wg, €) > 0 such that F(w) C F(wg) + Be(0) on Bs(wg) N . Evidently,
both concepts reduce to continuity in the single-valued case.

Let us record some elementary properties of usc multis.

Proposition 2.1 Let X,Y be Banach spaces and ) # Q C Y. Then

(a) If F : Q — 2%\ 0 is usc then F is e-6-usc. The converse is true if F has compact values.

(b) If F is usc with compact values then F(C) is compact for all compact C.

(c) If F is e-6-usc and Q is closed then F has closed graph. If gr(F) is closed and F() is
compact then F is usc.

(d) If F' is e-d-usc then convF is e-d-usc.

An important example of a multivalued map is the metric projection onto a subset C of X,
defined by

Po(x) ={y € C: |z —y| = p(z,C)}.
If ) # C C X is compact then P is usc with compact nonempty values. If C is also convex
then Pg(z) is convex. Another example is the set-valued version Sgn of the sign-function
mentioned before. The latter is a prototype for multivalued “regularizations” of discontinuous
functions f : 2 — X, obtained by “filling in the gaps at points of discontinuity of f” in simplest
cases. More generally, given F : Q — 2% \ () with closed values, such a regularization Fof F

is obtained by means of

~

F(w) = ﬂ convF(Bs(w) N Q) for w e .
>0
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If F is locally compact, i.e. if for every wy € € there exists r = r(wp) > 0 such that
F(B,(wp) N Q) is compact, then F' is usc with compact convex values F(w) D F(w). While
upper semicontinuous multis, like Po or Sgn from above, need not admit continuous selec-
tions, the following proposition shows that “approximate selections” exist under additional

assumptions.

Proposition 2.2 Let X, Y be Banach spaces, ) # D C X compact and F : D — 2% \ () usc

with compact convex values. Then, given € > 0, there is a continuous fe: D — X such that
fo(w) € F(B.(x) N D) + B0).

In the situation of Proposition 2.2 with X =Y the mapping F has a fixed point, i.e. there
is £ € D such that z € F(x), if also F(D) C D holds. The same is true under weaker

assumptions on the values of F.

Lemma 2.1 Let X be a Banach space, ) # D C X compact convez and F : D — 2P \ 0 usc

with closed contractible values. Then F has a fixed point.

This is a special case of the Corollary given in Gérniewicz/Granas/Kryszewski [62], where the
values of F' are only assumed to be compact Rs-sets.

From the viewpoint of applications in infinite dimensional Banach spaces the following
weaker version of upper semicontinuity is more appropriate. A multi F : Q — 2% \ 0 is said
to be weakly usc if F~'(A) is closed in Q for all weakly closed A C X. Equivalently, F is
weakly usc iff {z € Q: F(z) C V} is open in 2 whenever V C X is weakly open. If F' has
this property then z* o F': Q — 28\ () is obviously usc for every z* € X*. More information

is contained in

Proposition 2.3 Let X be a Banach space,  # () a subset of another Banach space and

F:Q — 2%\ 0 have weakly compact values. Then the following holds.

(a) If F is e-6-usc then F is weakly usc.

(b) If the values of F are also convex, then F is weakly usc iff (x,) C Q with z, — xy € Q
and y, € F(zy) implies yp, — yo € F(zo) for some subsequence (yn,) of (yn)-

Proof. To obtain part (a), let F' be e-d-usc and suppose that F' is not weakly usc, i.e. there
is (z,,) C Q with z,, = z¢ € Q and a weakly closed A C X such that F(z,) N A # 0 for all
n>1and F(zg) N A= 0. Let € := inf{p(y,A) : y € F(xp)}. We are done if € > 0, since
then (F(zg) + Be(0)) N A = 0, hence F(z,) C F(z¢) + Be(0) for all large n > 1 gives the
contradiction F(z,) N A = ( for those n. If ¢ = 0, we find y,, € F(z¢) and z, € A such that
|Yn, — 2n| — 0. Since F(zy) is weakly compact we may assume y,, — yo € F(zg), hence also

zn, — yo € A which gives yy € F(zy) N A, a contradiction.
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Concerning (b) notice that sufficiency is obvious. To prove necessity let us first show that

F(C) is weakly compact for every compact C C €. For this purpose let |J V) be any
AEA
weakly open covering of F(C). For any z € C, F(z) is then covered by finitely many V),

the union of which we denote by V. Since F' is weakly usc and V, is weakly open the sets
m

Uy :={% € Q: F(z) C V,} are open in Q and cover C. Hence C C |J U,, for certain
i=1

1=

m
Zi,...,Tm € C. This yields F(C) C U V, since y € F(C) means y € F(x) for some z € C
i=1

and z € Uy, for some i. Therefore, F(C) is weakly compact since G Vg, is the union of
finitely many V). =

Let (z,) C Q with 2, — 29 € Q and y,, € F(z,). Then F({z, : n > 1}) is weakly compact,
hence y,, — yo for some subsequence. Suppose yo & F(z). By Mazur’s Theorem we find
z* € X* such that z*(y) <7 on F(z¢) and z*(yo) > 7+ 2 with some € R and § > 0. Then
F(zn,) N A # 0 for all large k£ > 1 with the weakly closed set A = {y € X : z*(y) > r + 4}

implies F(xg) N A # (), a contradiction. O

Since the concept of lower semicontinuity (Isc for short) will only play a minor role in the
sequel, let us just mention that F : Q — 2% \ § is called Isc if F~1(V) is open in  whenever
V C X is open. Equivalently, F is lsc iff p(z, F'(-)) is usc for all z € X. Here usc refers to
upper semicontinuity of real valued functions; recall that ¢ : Q — R is usc if (w,) C Q with
wp, — wo implies lim @(wy) < @(wg) for every wg € Q. If F is Isc with closed convex values
then F' admits a élo_r)l%ljnuous selection Michael’s selection theorem.

Let us also note that F : Q — 2% \ () is said to be continuous (w.r. to dg) if (w,) C Q

with w, = wy implies dy (F(wy), F(wg)) — 0 for every wy € .

2.2 Measurability

Let us first introduce some standard notation. The triple (J, £, A1) denotes the measure space
consisting of the Lebesgue measurable subsets £ of an interval J C R with the one-dimensional
Lebesgue measure A\ : £L — Ry = Ry U{occ}. A set M € L is simply called measurable in
the sequel, and N € £ is a null set if A\; (V) = 0; recall that (J, £, A1) is a complete measure
space, i.e. subsets of null sets are measurable. The Lebesgue measure on R" is denotes by
An- Given a Banach space X we let B be the Borel measurable subsets of X, i.e. B is the
smallest o-algebra containing all open subsets of X. Then w : J — X is called measurable if
w~Y(B) € L for all B € B which is the same as w™ (V) € L for all open V C X. Moreover,
w is strongly measurable if w is measurable and there is a null set N C J such that w(J \ N)
is contained in a separable subspace of X.

Recall that a subset W of L'(.J; X) is called uniformly integrable if for every e > 0 there
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exists 6 = d(e) > 0 such that A € £ with A\{(A) < d(e) implies / |lw(t)|dt < € for all w € W;
remember that this is always true if |w(t)| < ¢(t) a.e. on J for allﬁ) € W with some ¢ € L'(.J).
If (2, A) is a measurable space, a multivalued F' : Q — 2% \ () is called A-measurable
if F~Y(V) € A for every open V C X. In case A = L, we write “measurable” instead of
“A-measurable”. If F' has closed values and v is a measure on A, then F' is called strongly
measurable if there is a sequence of step-multis F},, i.e. multis of type Z X 4,C; with disjoint
i>1
A; € A and closed C; € 2%\ (), such that dy (F,(w), F(w)) — 0 v-a.e. on Q; here X4 denotes
the characteristic function of a set A. Observe that the definition of strong measurability just
given is consistent with the corresponding single-valued notion.

In the special case when F :  — 2% \ () is defined on an open bounded subset Q of R",
it is not difficult to check that strong measurability of F' is the same as “F has the Lusin
property”, which means that for every e > 0 there is a closed Q, C Q with A, (2 \ Q) < ¢
such that Fjg_ is continuous (w.r. to dy). If X is separable, i.e. X = m for some
sequence (zr) C X, the latter is equivalent to measurability of F. In this situation several

equivalent characterizations of measurability exist and are recorded below.

Lemma 2.2 Let (2, A, 1) be a o-finite complete measure space, X be a separable Banach

space and F : Q — 2% \ () have closed values. Then the following statements are equivalent.

(a) F~Y(B) € A for all B € B.

(b) F~1(A) € A for all closed A C X.

(c) F~Y(V) € A for all open V C X.

(d) F(w) = {fn(w) : n > 1} on Q with a sequence of measurable selections fy, of F'.

(e) p(x, F(-)) is measurable for all z € X.

(f) graph(F') € A® B, where A® B is the smallest o-algebra containing all A x B for A€ A
and B € B.

This is Theorem II1.30 in Castaing/Valadier [34]. Observe that Lemma 2.2 in particular
says that a measurable F' with closed values in a separable Banach space admits a (strongly)
measurable selection. A second consequence of this result will also be important later on: if,
under the assumptions of Lemma 2.2, F' and G are A-measurable such that F(w) N G(w) # 0
p-a.e. on €, then F'N G is A-measurable, too.

2.3 Existence of viable solutions

A large part of the subsequent chapter is devoted to the study of accretive evolution problems

with multivalued perturbations of usc type, for example initial value problems of the form

v € —Au+ F(t,u) on J=10,a], u(0)=wug
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with m-accretive A and a multi . In addition, we are often interested in solutions that satisfy
additional constraints, say u(t) € K on J with a closed subset K of X in the simplest case.
In the present section we introduce some further concepts that are important for the study of

such kind of problems. To motivate these notations we consider the special case A = 0, i.e.
u' € F(t,u) on J, u(0)= uop. (1)

In analogy to the case of evolution equations governed by m-accretive operators we say that
u: J — X is a strong solution of (1) if u is absolutely continuous and a.e. differentiable
such that the inclusion in (1) is satisfied for almost all ¢ € J; notice that such a differential
inclusion usually does not admit continuously differentiable solutions. Let us note that strong
solutions are also called absolutely continuous solutions in this setting.

If F' is only defined on J x K with a closed subset K C X, then every solution u of (1)
also has to satisfy u(¢) € K on J which evidently requires certain conditions at the boundary
of K: let ¢t € [0,a) be such that y := «/(t) exists and satisfies y € F(t,z) with 2 := u(¢). Then

u(t+h) =z + hy +o(h) € K for all small h >0

with o(h)/h — 0 as h — 0+. Hence y is subtangential to K at z, i.e. y € Ty (z) with the
tangent cone T (z) defined by

Tw(z) ={y € X : lim h™'p(z + hy, K) =0} for z € K. (2)
h—0+

Let us mention that T (z) is sometimes called the Bouligand contingent cone. Consequently,
an almost necessary condition for existence of strong solutions of (1) is given by

F(t,z) NTy(xz) #0 on [0,a) x K;

in the single-valued case the latter reduces to a condition of “Nagumo type”.

Let us summarize some basic properties of this tangent cone.

Proposition 2.4 Let X be a real Banach space and ) # K C X. Then
(a) 0 € Ty (z) on K and Ty (z) = X on K. The sets Ty (x) are closed with XT'y (x) C Tk (x)
for all A > 0.

(b) If K is convex then Ty (x) is conver and given as

Ty(z)={y€ X : lim h'p(z+hy, K) =0} on K.
h—0+

(¢c) If K is convez then Ty (z) = { My —z): A >0,y € K} and Ty (-) is lsc on K.

In the sequel we will also consider time-dependent constraints of type u(t) € K(t) where
K :J — 2%\ 0is a given “tube” such that gr (K) is closed from the left, i.e. t, 7 t and
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zn € K(t,) with z, — = implies z € K (t). By the considerations given above it is clear that
Ty (x) then has to be replaced by the set

Ty(t,z) ={y € X : lim h™'p(z + hy, K(t + h)) = 0} fort€[0,a) and = € K,
h—0+

in order to formulate the corresponding subtangential condition.

Additional assumptions on F' have to be imposed if initial value problem (1) is considered
in an infinite dimensional Banach space. Recall that even the single-valued autonomous
problem

u' = f(u) on J, u(0) =ug (3)

need not have a (local) solution for continuous f : X — X, but local existence is guaranteed if,
e.g., f is locally Lipschitz of compact. A combination of compactness and Lipschitz conditions
is possible by means of measures of noncompactness. Let X be an infinite dimensional Banach
space and B be the family of bounded subsets of X. Then o : B — R, defined by

a(B) = inf{d > 0 : B admits a finite cover by sets of diameter < d} for B € B,
is the Kuratowski-measure of noncompactness, and 0 : B — R, defined by
B(B) = inf{r > 0: B can be covered by finitely many balls of radius < r} for B € B,

is called Hausdorff-measure of noncompactness. These functions have the following properties.

Proposition 2.5 Let X be a Banach space of infinite dimension, B the family of bounded
subsets of X, and v : B — Ry be either a(-) or B(-). Then

(a) v(B) = 0 iff B is compact.

(b) v is a seminorm, i.e. y(AB) = |A|y(B) and v(By + B2) < v(B1) + v(Bz2).

(c) By C By implies y(B1) < y(B2); v(B1 U By) = max{vy(B1),v(B2)}.

(d) y(convB) = y(B), v(B) = v(B).

(e) v is continuous with respect to dp.

() a(B.(x)) = 2r and B(B,(z)) = r.

In general one has B(B) < «(B) < 28(B) and both inequalities may be strict. Notice
also that 5(B) depends on the sets from which the centers of the covering balls are chosen.
Therefore, if B C Q@ C X and centers are chosen from € instead of X, we write fq(B) and
have 3(B) < fa(B) < 28(B) for all bounded B C Q.

Let us note in passing that F = Fy + Fy with F}, F, : K C X — 2%\ () satisfies 3(F(B)) <
kB(B) for bounded B C K, if F;(B) is compact for bounded B C K and F, has relatively
compact values such that dg (Fa(z), Fa(y)) < k|lz —y| for all z,y € K.

The subsequent result establishes existence of strong solutions of (1) in a quite general
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situation. In Theorem 2.1 below a multi F' : G — 2% \ (), defined on the graph G of a tube
K :J — 2%\ 0, is said to be almost usc if for every ¢ > 0 there is a closed J. C J with
A1 (J\ Je) < e such that Fjj;, « x)ng is usc.

Theorem 2.1 Let X be a Banach space, J = [0,a] C R and K : J — 2% \ () be such that
gr(K) is closed from the left. Let F : gr(K) — 2X\ () be almost usc with closed convex values
such that
[|F(t,z)|| < c(t)(1 + |z|) on gr(K) with ¢ € L*(J)
and
hlgtl)qu (F([Jin x BlNgr(K)) < k(t)B(B) on (0,a] for bounded B C X

with k € L'(J), where J;, = [t — h,t] N J. Suppose that
F(t,z) NTx(t,z) #0 for allt € [0,a) \ N,z € K(t)

and Ty (t,z) # 0 for allt € N and = € K(t) with some null set N C [0,a).
Then (1) has a strong solution on J for every ug € K(0).

This is Theorem 1 in Bothe [19]. For later use we finally record the following consequence of
Theorem 2.1; recall that D C X is locally closed if D N B, (z) is closed for every z € D with

some r = r(z) > 0.

Corollary 2.1 Let D C R” be locally closed and f: D — R"™ be locally Lipschitz continuous
with f(x) € Tp(x) on D. Then (3) has a unique local solution for every ug € D.

Concerning the proof of Corollary 2.1 let us just note that Theorem 2.1 applies to F, K(-)
if we let K(t) = K := D N B,(up) with sufficiently small r > 0 and F(z) = ¢(|z — uol) f ()
where ¢ is Lipschitz continuous with ¢(s) = 1 on [0,7/2] and ¢(s) = 0 for s > r; observe
that F(z) € Tx(z) on K by Proposition 2.4. Hence (3) with f replaced by F' has a solution
uw on J and u is obviously a solution of the original problem on [0, 5] with some b > 0. This

solution is unique since F' is locally Lipschitz.
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Chapter 2

Existence and Qualitative Theory

We consider abstract evolution problems of the type
'+ Au 3 f(t,u) onJ=1[0,a], u(0)= uo, (2.1)

where A is m-accretive in a real Banach space X and f is a nonlinear perturbation defined
on a certain subset G of J x X. As mentioned before, it may be favorable to replace a
discontinuous f by a multivalued "regularization” F : G — 2% \ () having some kind of upper
semicontinuity property. We also study this case and, since A can be a multivalued operator
as well, we then write

u € —Au+ F(t,u) on J, u(0)= up. (2.2)

In the present chapter we start with existence theory in case that the perturbation is defined
on all of J x D(A). In this situation existence of a (unique) local mild solution of (2.1) is well
known if f is locally Lipschitz continuous, while a local solution need not exist if f is merely
continuous and dim X = oo even in the special case A = 0 (see Godunov [61]). To prove
existence of mild solutions we mainly impose additional compactness assumptions, either on
the semigroup generated by —A or on the perturbation, where we concentrate on initial value
problem (2.2) with F' being of upper semicontinuous type. The reason to start directly with the
multivalued case is twofold. Firstly, problem (2.1) with continuous f is a special case, hence
the subsequent results concerning (2.2) carry over immediately, or (under weaker assumptions)
by simple modifications of the proofs. This way we will recover the known ”single-valued”
results, sometimes even generalizations thereof. Secondly, the interplay between accretivity
and (upper) semicontinuity is more delicate and leads to interesting additional difficulties.
Actually, problem (2.2) need not admit a mild solution even in finite dimensions. However,
existence of mild solutions can be established if X has certain smoothness properties or A, F'
satisfy additional assumptions that are fulfilled in several types of applications.

Another question enters the picture naturally if, due to the physical background, solutions

are only meaningful if additional constraints are satisfied. For instance if (2.1) is the abstract
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formulation of a reaction-diffusion system then u usually represents certain concentrations,
hence nonnegativity is a minimal requirement. A further common feature in such kind of
applications is that the perturbation, which refers to the reaction part, is only defined on
certain thin subsets. Therefore one is often interested in mild solutions that satisfy u(t) € K
for a certain subset K of X. Such questions of invariance or viability are studied in §4, with
main emphasis on the single-valued case. If f is continuous (or even locally Lipschitz), we
can allow for time-dependent constraints of type u(t) € K(t), which are incorporated into the
evolution problem by assuming that f is only defined on the set gr (K) C J x X. Of course
a certain ”subtangential condition” is then required to have existence of mild solutions. We
show that this necessary condition is in fact also sufficient for existence of solutions in several
situations, where a basic step consists in obtaining appropriate approximate solutions. If f is
only Carathéodory, corresponding results are provided for fixed constraints K(t) = K.

Besides the case when f is locally Lipschitz or satisfies a condition of dissipative type, we
again impose additional compactness assumptions on A or on f if constraints are present. As
a consequence of these conditions, the set U(ug) of all mild solutions of (2.1), respectively
(2.2) is a compact subset of C(J; X) in all the situations that are considered in §3 and §4.
In the first section of §5 it will be shown that U (ug) is in fact a compact Rs-set (especially
connected) within the settings of §3. If constraints are present the situation becomes more
difficult, but the same conclusion is valid if, in particular, K(¢) = K is closed convex and
the following “separated subtangential condition” holds: (I + AA) 'K C K and F(t,z) N
Ty (z) # 0 on [0,7) x K. The proof is based on a recent result concerning locally Lipschitz
approximate selections of F', which is also useful for studying the problem of existence of T-
periodic solutions in K. The latter is done in §5.2 for T-periodic and Carathéodory f, where
sufficient conditions for existence of a T-periodic solution are obtained within two different
settings: X is any Banach space and the separated subtangential condition from above is
satisfied; X and X* are uniformly convex, K has nonempty interior and f(¢,2) — Az C T (z)
fort € [0,7) and z € K N D(A).

The starting point of the final section is the well-known fact that A + F' is m-accretive,
given that A is m-accretive and F' : X — X is continuous and accretive. This result is
extended to usc F : X — 2% \ () with compact convex values in §5.3. While this question is
not directly related to the previous topics, such criteria for m-accretivity of the sum of two
operators can of course be helpful to check whether a concrete application admits an abstract
formulation of the type (2.1) or (2.2).
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§3 Existence of Solutions

Let A be m-accretive in a real Banach space X, F : J x D(A) — 2% \ § with J = [0,7] C R

and consider the initial value problem

u € —Au+ F(t,u) on J, u(0)= uo. (1)

Given ug € D(A), we look for mild solutions of (1) which means that v € C(J; X) is the mild

solution of the quasi-autonomous problem

u' + Audw(t) onJ, u(0)=wug (2)

with some
w € Sel (u) := {v e L}J; X) : v(t) € F(t,u(t)) a.e. on J}.

Evidently u is a mild solution of (1) iff u € C(J;X) is a fixed point of G := S o Sel,
where Sw denotes the unique mild solution of (2) corresponding to w € L'(.J; X) for fixed
ug € D(A). To obtain existence of mild solutions by means of this fixed point approach,
additional assumptions are of course needed even for single-valued continuous perturbations.
In the multivalued case a further difficulty occurs, since the graph of G need not be closed.
Notice that, even if F' is usc with compact convex values, (w,) C Sel(u,) with u, — u in
C(J; X) only implies weak relative compactness of (wy) in L'(J; X). Then the crucial point
is whether w, — w in L'(J; X) and Sw, — u in C(J; X) implies Sw = u. This does not
hold in general, and the following counter-example shows that this difficulty is not a purely

proof-technical one.

3.1 Nonexistence.

Even in finite dimensions, initial value problem (1) need not have a mild solution. More
precisely, within the next example we define an m-accretive operator A in R* and a bounded

usc F' with compact convex values such that (1) has no mild solution.

Example 3.1 (a) We start with a two-dimensional example in which w, — w in L'(J; X)
and Swy, — u in C(J; X) do not imply Sw = u.

Let X = R? with norm |z|; = |z1| + |z2|, z = (1,0) and A : X — 2%\ § be given by

{—=} if z1 <0
Az =< {(s,0(s):—1<s<1} if =z =0,
{z} if x>0

where ¢ : [—1,1] — R is Lipschitz of constant 1 with ¢(—1) = ¢(1) = 0. To show that A
is m-accretive in X, let ,T € X and y € Az, § € AT where it suffices to consider the case
T1 < 0 < z1. By definition of A it is easy to check that

[~ %,y ~ 7] = max ((s — 5) Sgu (a1 ~ 71)) + max (((s) ~ (5)) Sgn (v2 ~ 7).
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where |s|,|5| < 1land s =1if 2y > 0 as well as 5= —1 if T; < 0. In case T; = 21 = 0 this
yields
[ =T,y =y > |s = 5] = |(s) — ¢(5)| = 0.

In the remaining cases it follows that

[x_fay_y] ZS_§_|(10(S)_(10(§)| Zoa

since then 5 < s. Consequently, A is accretive and it remains to show that R(I + A) = X.
Given y € X with |y;| > 1 it is obvious that z = y+ z if £y; < —1 is a solution of z+ Az > y.
In case |yi| <1 consider z = (0,y2 — ¢(y1)). Then y —z = (y1, ¢(y1)) € Ax.

Let J = [0,1], () = sgn (sin(2"7t)) be the Rademacher functions (with sgn(0) = 1)
and define (w,) C L'(J; X) by wy(t) = r,(t)z on J. Then wy,(t) € {—2,2} on J and w, — 0
in LY(J; X) as n — oc. Due to 2 € A(0), the initial value problems

'+ Au s wy(t) on J, u(0)=0

have the strong solution v = 0. Hence Sw, = 0 for all n > 1, since strong solutions are also
mild solutions. Therefore w, — 0 in L'(J; X) and Sw, — 0 in C(J; X).
Nevertheless, SO # 0 unless ¢(0) = 0. Notice that the solution of ' + Au >0 on J, u(0) =0
is given by u(t) = (0,t¢(0)) on J.

(b) We will now define an m-accretive operator A and a compact convex C' C X such that
S(W) is not closed, where W = {w € L*(J; X) : w(t) € C a.e. on J}.
For this purpose let X = R*, equipped with the norm | - |;, and define A : X — 2X\ §) by
means of gr (A) = gr (A1) x gr(Asz), where the Ay correspond to functions ¢, and are given

as in part (a). As ¢ and ¢y we choose (see Figure 1)
l+r if —1<r<i
p1(r)=1—|r| on[—1,1] and o(r) = —r i |r| <3
—1+r if L<r<i

Given e = (3,0,3,0), we let w,(t) = rp(t)e on J = [0,1] with the 7, from above. For
n > 1, let u, = Sw, with initial value u,(0) = 0. Since all u,, are Lipschitz continuous mild
solutions and X has the Radon-Nikodym property, it follows that the u,, are strong solutions;
see Theorem 1.2. By definition of Ay outside the subspace X = {z € X : 2y = z3 = 0}
and the choice of e it follows that the solutions remain in X;. Notice, for example, that
u'(t) + Au(t) 3 w(t) a.e. on J implies

d
%|u1(t)| = vy (t)sgnui(t) <0 ae. on J whenever |wi(t)| <1 a.e. on J.

Therefore
(1) € [Aun(t) = wa ()] 0 Xo = [gr (1) X g1 (92) — ra(t)e] N X ace. on J,
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hence ul,(t) = (0,—3.,0,3r,(t)) a.e. on J. Consequently, u,(t) = —ty + (0,0,0,v,(t)) on J
with ) Lt

Yy = (0, 5,0,0) and v, (t) = 5/0 T (T)dT.
This shows that u, — u in C(J; X) where u(t) = —ty on J. Moreover, (u,) C S(W) if we let
C = conv{—e,e} and W = {w € L'(J; X) : w(t) € C a.e. on J}. Now suppose that u = Sw
for some w € W. Then

u'(t) + Au(t) > w(t) a.e. on J, u(0) =0,

which means y + r(t)e € Au(t) a.e. on J with a measurable r : J — [—1,1]. By definition of
A this yields
y+ pe € gr(p1) x gr(psz) for some pu € [—1,1],

hence the contradiction ¢1(s) = 3 and ¢2(s) = 0 with the same s = &.
A
1
1 o b
i T g T
Figure 3.1

(c) Based on the previous part we obtain the following example for nonexistence. Let A,
y, e and C be as in (b) and define F': J x X — 2%\ () by

R(agt)e if k%rl <l|lz+tyl <z

F(t,z) = :
C if |z +ty| =0,

where o = k(k + 1) and R(s) = Sgn (sin(ms)) with Sgn (p) = p/|p| for p # 0 and Sgn (0) =
[—1,1]. Evidently F' is usc and bounded with compact convex values.

Assume that (1) with up = 0 has a mild solution u on J = [0,1]. As in (b) it follows that
u(-) € Xo, and u(t) = —ty is not possible due to F(t, —ty) = C.

Let 1(t) = |u(t) + ty| on J. Due to continuity of 1), 1(0) = 0 and 1) # 0 there exist 7 € (0, 1]
and k > 1 such that ¢(7) = 1 and () < § on [0,7). Let 0 = max{t € [0,7] : ¢(t) < k%rl}
Then

1 1 1 1
Y(o) = PenEE Y(r) = % and PRI P(t) < 5 o (0,7).
Consequently F(t,u(t)) = R(axt)e on (o, 7), which implies

u' + Au 3 ro(axt)e a.e. on [o,T].
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As in the previous step this yields «'(¢) = (0, —3,0, 2ro(ayt)) a.e. on [o, 7], hence

1 T
u(t) + 1y = u(o) + oy + (0,0, 0, E/ ro(akt)dt)

and therefore the contradiction

1—¢()<¢()+1/T (cxt)dt] < S R
g =Tl TR = T T oy T k1 2k
Thus (1) has no mild solution for this choice of A, F' and wq. &

This counter-example is essentially Example 1 in Bothe [23], but with appropriate modifica-
tions to simplify in particular the verification of m-accretivity. The starting point, i.e. the
type of operator considered in step (a), is based on an example in Crandall/Liggett [38],
where it was shown by means of similar m-accretive operators in (R?, |- | ) that a nonlinear

semigroup need not have a unique generator.

3.2 Perturbations of compact semigroups.

We consider initial value problem (1) in the situation when — A generates a compact semigroup
and, to avoid problems concerning the continuation of local solutions, we impose the growth

condition
| F(t,z)| :=sup{|y| : y € F(t,z)} < c(t)(1 +|z|) on D(F) with ¢ € L'(J). (3)

Once the global results are proved corresponding local versions follow easily as explained in
Remark 3.2. In this case the subsequent compactness result immediately yields a compact

convex subset of C(J; X) which is invariant under G = S o Sel.

Lemma 3.1 Let A be m-accretive in a real Banach space X such that —A generates a compact
semigroup and let W C L'(J; X) be uniformly integrable. Then S(W) is relatively compact
in C(J;X).

This is Theorem 2.3.3 in Vrabie [112] which is based on Theorem 2 in Baras [12], where W is
of the special type W = {w € L'(J; X) : |w(t)| < ¢(t) a.e. on J} with ¢ € L'(J).
In the sequel, it will always be assumed that the values of F' are at least weakly relatively

compact. Then the following criterion for weak relative compactness in L'(.J; X) applies to

Sel (u).

Lemma 3.2 Let X be a Banach space, J = [0,a] C R and W C L'(J;X) be uniformly
integrable. Suppose that there exist weakly relatively compact sets C(t) C X such that w(t) €
C(t) a.e. on J, for allw € W. Then W is weakly relatively compact in L'(J; X).
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This is Corollary 2.6 in Diestel/Ruess/Schachermayer [48] specialized to Lebesgue measure.
Existence of a mild solution of problem (1) can be established by means of the fixed point

approach in several situations. To avoid repetition of the same arguments under different

assumptions, we start with a basic existence result in which closedness of gr (G) is assumed.

Afterwards, several sufficient conditions will be given which imply that G has this property.

Lemma 3.3 Let X be a real Banach space and A be m-accretive such that —A generates a

compact semigroup. Let J = [0,a] C R and F : J x D(A) — 2% \ (0 with weakly compact

convex values be such that F(-,z) has a strongly measurable selection for every x € D(A),
F(t,-) is weakly usc for almost all t € J and (3) is satisfied. In addition, suppose that gr(G)

is closed. Then (1) has a mild solution for every uy € D(A).

Proof. 1. We first show that F admits an extension F : J x X — 2% \ () having the same
properties as F', such that the solution set of (1) remains the same if F' is replaced by F.
This can be achieved by means of F(t,z) = F(t, Px) on J x X with P : X — D(A) given by
Pz = Jygyz with Jy = (I + AA)~!, where we let A(z) = p(z, D(A)) on X and Jyz := z on
D(A).

Evidently F has the same properties as F if P is continuous with |Pz| < ¢; + ¢o|z| on X,
for some ¢q, cg > 0. To prove continuity of P, let (z,) C X with z,, — zg, A, := A(zy,) and

Ao := A(zg). Then A, — A, and A\g = 0 implies 2y € D(A), hence
|Pz,, — Pxo| = | I\, zn — x| < |Zn — xo| + |r, To — 20| — O
in this case. If Ag > 0 then A, > 0 for all large n, hence
|Pan — Paro| < | — o] + | I, 0 — Jag0| < |n — 20| + |1 — i_z|(|x0| +1Tnz0|) = 0,

where the last inequality follows from the resolvent identity. To obtain the estimate for P, fix
z € D(A) and § € AZ. Then

|Pz| < |z — 2| + |z Z] < |z — 2]+ M2)[g| + 2] < e1 +e2z] on X,

where ¢; := |2|(2 + |9]) and ¢ := 1+ |g].
Therefore, in the subsequent steps, we may assume that F' is defined on J x X; notice that
every mild solution u of (1) with F instead of F' satisfies u(J) C D(A), hence u is in fact
a solution of the original problem. Moreover, the graph of § o Sel is also closed if Sel
corresponds to F instead of F.

2. We may assume that F(¢,-) is usc for all ¢ € J, since a change of F(t,-) for ¢ from
a null set does not affect the solutions of (1). To obtain a fixed point of G = S o Sel, let
us first show Sel (u) # 0 for every u € C(J;X). For this purpose let v € C(J; X), u, be

step-functions with |u — up|o — 0 and w, be strongly measurable selections of F(-,un(-)).

29



Then {w, : n > 1} C L'(J;X) is uniformly integrable by (3). Moreover, the w,, satisfy
wy(t) € C(t) := F(t,{ug(t) : k > 1}) and the sets C(t) are weakly compact by Proposition 2.3.
Therefore we may assume w, — w in L'(J; X) due to Lemma 3.2. By Mazur’s theorem there
are W, € conv{wy, : k > n} such that w, — w in L'(J; X), hence w,, (t) — w(t) a.e. on .J
for some subsequence (@, ). To conclude w(t) € F(t,u(t)) a.e. on J we argue as follows. Let
t € J be such that wy(t) € F(t,u,(t)) for all n > 1 and w,, (t) = w(t). Given z* € X*
and € > 0, it follows that z*(w,(t)) € z*(F(t,u(t))) + (—€, €) for all large n, hence the same
inclusion holds for z*(wpy, (t)) for all large k; notice that z* o F(t,-) is usc with compact
convex values. Hence x*(w(t)) € z*(F (¢, u(t)) for all z* € X* which implies w(t) € F(t,u(t)),
since F' has closed convex values. Consequently Sel (u) # (. In fact the same argument
(with u,, € C(J; X) instead of step-functions) together with Proposition 2.3 also shows that
Sel : C(J; X) — 2L'(1iX) \ 0 is weakly usc with weakly compact values.
3. Let S(t) denote the semigroup generated by —A and let 1) be the solution of

' = c(t)(1+1) ae. on J, (0) = max{|S(t)ug|:t € J}.

Then Ko = {u € C(J;X) : |u(t)| < 1(t) on J} is closed bounded convex such that G(Ky) C
Ky; notice that v € Ky and v = Sw for w € Sel (u) implies

t t
(0] < IS(Euol + [ w(s)lds < 9(0) + [ e(s)(1+ p(s))ds = (t) on .

Evidently G(K) C K for K := conv G(K)), the latter set is compact convex in C(J;X)
by Lemma 3.1, and G : K — 2K\ () by the previous step. We claim that the values of G
are contractible. To see this, let C = G(u) for some u € K, fix w € Sel(u) and define
h:10,1] x C — C by

v(t) if t € [0, sa]
u(t; sa,v(sa)) ift € (sa,al

h(s,v)(t) = {

where (- ;tg, ug) is the solution of u' + Au > w(t) on [tg,a], u(ty) = ug. Notice that h maps
into C, since v = Sw for some w € Sel (u), hence h(s,v) = Sw with @ := WXy 44 + DX (50,4 €
Sel(u). Given 0 < s < § <1 and v,0 € C let p(t) = |h(s,v)(t) — h(8,0)(¢)] on J. Then
o(t) = |v(t) — o(t)| on [0, sal], p(t) < @(s) + Q/t c(7)(1 + |ulo)dT on [sa, 3a] and ¢(t) < p(3)
on [$a,a] by the inequality for integral solutions. Therefore

Sa

Ih(s, ) — h(3,8)]o < v — 6o + 2(1 + |u|0)/ c(t)dt,

sa
which yields continuity of h. Evidently h(0,v) = Sw and h(l,v) = v on C, hence C is
contractible.

Finally, gr (G) is a closed subset of K x K, hence compact. Therefore G is usc by Propo-
sition 2.1, and application of Lemma 2.1 yields a fixed point of G. O
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By means of Lemma 3.3 we are now able to obtain the first main result.

Theorem 3.1 Let A be m-accretive in a real Banach space X such that —A generates a
compact semigroup. Let J = [0,a] C R and F : J x D(A) — 2% \ () with closed conver values

be such that F(-,x) has a strongly measurable selection for every x € D(A), F(t,-) is weakly

usc for almost allt € J and (3) is satisfied. Then (1) has a mild solution for every ug € D(A),

if also one of the following conditions is valid.

(a) F ={f} with f : J x D(A) — X continuous in z.
(b) X* is uniformly convez.
(c) X* is strictly convez, F(t,-) is usc with compact values for almost all t € J.

(d) A is linear and densely defined, F' has weakly compact values.

Proof. We only have to show that gr(G) is closed, since then Lemma 3.3 applies; notice
that the values of F' are weakly compact in each case. For this purpose, let v, € G(u,) with
up, — uw and v, — v in C(J; X). Then v, = Sw, with w, € Sel(u,), and |w,(t)] < ¢(t) a.e.
on J with ¢ € L(J) for all n > 1.

Now the single-valued case (a) is particularly simple, since u, — u in C(J; X) and w,, €
Sel (uy,) imply wy, = f(-,un(-)) = w = f(-,u(-)) a.e. on J. Hence w,, — w in L'(J; X) by the
dominated convergence theorem and therefore v, = Sw, — Sw, i.e. v = Sw € G(u).

In all remaining cases we may assume w, — w € Sel (u) in L' (.J; X) by step 2 of the proof of
Lemma 3.3. Let 7 = Sw and 2z, = w — wy,.

If (b) holds, the inequality for integral solutions (see (3) in §1.4) implies
t

[5(t) — v (1))* < / (zn(8),7(8) — vp(8))4ds on J for all n > 1.
0

Now recall that the duality map F : X — X* is single-valued and uniformly continuous on

bounded sets by Proposition 1.3 since X* is uniformly convex. Hence

%Iﬁ(t)—vn(t)l2 < /t7‘"(5(8)—U(S))(Zn(S))d8+|Zn|1 sup || F(0(s) —vn(s)) = F(0(s) —v(s))|| = 0;
0 J

t
notice that (z,) is bounded in L'(J; X) and that z — / F(v(s) —v(s))(z(s))ds defines a
0
continuous linear functional on L'(J; X). Consequently v = 7, hence v = Sw € G(u).
If (c) is satisfied, then z, — 0 in L'(J; X) implies
— 1 — [t
lim [o(t) - ()2 < Tim [ [F@(s) — vn(s)) — F(@(s) — v(s))](2n(s))ds on J.

n—oo n—oc J0
For s € J let z}(s) = F(v(s) — vp(s)) — F(v(s) — v(s)). Since F is continuous from X with
the norm-topology to X* with the weak*-topology due to strict convexity of X*, it follows
that z (s)(z) — 0 for all z € X, uniformly on compact sets. Now recall that wy,(t) € C(t) :=
F(t,{uy(t) : k> 1}) a.e. on J, and the C(t) C X are compact by Proposition 2.1 due to the
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assumptions on F(¢,-). Therefore z},(s)(zn(s)) — 0 a.e. on J. Moreover, |z} (s)(zn(s))| <
Mp(s) a.e. on J with some M > 0. Hence v = 7 € G(u) by the dominated convergence
theorem.

If condition (d) holds then all v, satisfy the variation of constants formula, i.e.
t
vn(t) = S(t)ug +/ S(t — s)wp(s)ds on J,
0

where S(t) denotes the semigroup generated by —A; see Proposition 1.5. Given z* € X*, it
follows that

z¥(0(t) —vn(t)) = /Ut ¥ (S(t — s)(wn(s) —w(s))ds — 0 as n — oo,

hence 7(t) = v(t) on J and therefore v =7 € G(u). O

3.3 Perturbations of dissipative type.
In the present section we first consider single-valued perturbations, i.e.
' + Au > f(t,u) on J, u(0) = ug (4)

with J = [0,a], where we assume that f : J x X — X is Carathéodory, i.e. f is strongly

measurable in ¢ and continuous in x, and satisfies the dissipativity condition
(f(t,z) — f(t, %),z —T)_ < k(t)|z —7|)* foraa. teJ,allz,7c X with k€ L'(J). (5)

Existence of a mild solution will be obtained by reduction to the case of jointly continuous f,

which is based on

Lemma 3.4 Let X be a separable Banach space, K C X closed and f : J x K — X with
J =10,a] C R be Carathéodory. Then f is almost continuous, i.e. for every ¢ > 0 there exists
a closed J. C J with A\ (J \ J¢) < € such that fl1.xx 18 continuous.

Lemma 3.4 is a special case of Theorem 2 in Kucia [74].

After reduction to continuous f the following basic existence result applies.

Lemma 3.5 Let A be m-accretive in a real Banach space X, f : Jx X — X with J = [0,a] C
R be continuous and such that (5) holds with k(t) = k. Then (4) has a unique mild solution

for every up € D(A).

For k = 0 this is Theorem II1.3.1 in Barbu [14]. For general k see Theorem III in Pierre [94],

where it is actually shown that Lemma 3.5 remains true for continuous f : J x D(A) — X.
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The next result provides an extension to the Carathéodory case under the additional growth
condition
|£(t,2)] < ¢(t)(1 4 |z]) on J x X with some ¢ € L'(J); (6)

notice that some assumption concerning the growth of f is needed, since f(t,z) = g(t) is

Carathéodory and satisfies (5) with k¥ = 0 whenever g : J — X is strongly measurable.

Theorem 3.2 Let A be m-accretive in a real Banach space X, f: J x X — X with J =
[0,a] C R be Carathéodory satisfying (5) and (6). Then (4) has a unique mild solution for
every ug € m

Proof. Since almost all f(¢,-) are continuous and everywhere defined, condition (5) implies
the same inequality with (-,-)_ replaced by (-,-);; see Proposition 1.2. Hence uniqueness of
mild solutions is a direct consequence of the inequality (3) in §1.4 for integral solutions.

1. We first reduce to the case of separable X as follows. We claim that there is a closed
separable subspace X C X with ug € X and a measurable J C J with A\;(J \ J) = 0 such
that f(J x X) C X and (I +XA)"'X C X for all A > 0.

If this holds, the restriction A of A to X (defined by means of gr (4) = gr (4) N[X x X])
is m-accretive in X. Since the solution set of (4) is not changed if we redefine f to be zero
for all t € J \ J, it suffices to consider (4) in the separable Banach space X then.

To prove the claim, let Xy = span{ug} and My C X, a countable dense subset of Xj.
Since f(-,x) is strongly measurable for all z € M), there is a measurable subset Jy of J with
A (J\ Jy) = 0 such that f(Jy x My) is contained in a separable subspace. In addition, .Jy can
be chosen such that f(¢,-) is continuous for all ¢ € Jy. Let

Xy =span (Xo U f(Jo x Xo) U |J (I +24)7'X,).
A>0

To see that X is separable, recall that span M = span M for any M C X and notice that
f(Jo x Xo) C f(Jg x Mp) by continuity of the f(¢,-), and

U +24) "X c{(I+XA) 1z :2 € My,0 < X €Q}.
A>0

By induction, we get a decreasing sequence of measurable .J,, C J with A\;(J\ J,) = 0 and an

increasing sequence of separable subspaces X, such that

X1 = Span (Xn Uf(Jn x Xp)U | (T + AA)*IXn).
A>0

Let J = ﬂ J, and X = U X,,. Evidently J C J is measurable with A(J\ j) =0 and X
n>0 n>0
is a closed separable subspace. Given (t,x) € J x X, there is a sequence (zy) with 2, — =
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and zj € X, for some n; > 0. Hence y;, := f(t,z) — f(¢t,z) and yp € X, 41 C U X,

n>0
implies f(t,2) € X. The same argument yields (I + AA) 'z € X for any A > 0, hence the
claim holds.

2. By the previous step we may assume that X is separable, hence f is almost continuous
by Lemma 3.4. For fixed e > 0 this yields approximate solutions by reduction to the continuous
case as follows. Let J. C J be closed with A(J\ J¢) < e such that f); . x is continuous, where
we may also assume that c|;_, k) ;. are continuous and {0,a} C J,. Since J\ J. C R is an open
set, there are disjoint (ay,b,) C J such that J\ J. = U (an,by). Define fo: J x X — X by

n>1
f(t,z) ifteJ.
et,{E — bn—t t— " 7
felt, ) Il )+ A0 f0) i€ (o) (7)

Evidently f. is continuous and satisfies (5) with k. = max k(t) in place of k(t); recall that
the stronger version of (5) with (-,-)4 holds for f. By means of Lemma 3.5 there is a mild
solution of (4) with f replaced by f..

Consider ¢, \, 0 with Z €n < oo. For m > 1 let f, be given by (7) for € = ¢,, let
n>1
Jp denote the corresponding set J., and u, be a mild solution of (4) with f, instead of f.

Suppose that the J, can be chosen in such a way that, in addition, J, C J,41 and
|fu(t, )| < é(t)(1 + |z|) on J x X for all n > 1 with é € L'(J). (8)

If this holds then .
ua(®)] < |50l + [ &(s)(1+ fun(s)ds on

hence there is R > 0 such that |u,|o < R for all n > 1. Now consider m,n > p for fixed p > 1.
By definition of f,, we have f,(t,z) = fn(t,z) = f(t,z) on J, x X, hence

[un () = um()* < 2 /Ot(fn(s,un(S)) = fm(s,um(s)), un(s) — um(s))+ds

<2 k(s)|un(s) — um(s)|2ds + 4R/ | fn(s,un(s)) — fm(s,um(s))|ds on J.
[0,t]NJp [0,t]\Jp

This implies
t
|t () = (8) |2 < 2/ E(8)|un(8) — um(s)*ds + 6, on J
0
with

dp <8R(1+ R)/ ¢(s)ds — 0 as p — oc.
I\Jp

Application of Gronwall’s lemma shows that |u, — uy,|o < \/ge‘kh for m,n > p, hence (uy,)
is Cauchy in C(J; X), i.e. |u, —ulo — 0 for some u € C(J; X). Since fp, (¢, un(t)) = f(t,u(t))
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a.e. on every J,, hence a.e. on J, and |f,(¢,un(t))] < é(t)(1 + R) a.e. on J, the dominated

(1
convergence theorem yields wy, := f,(-,un(-)) — w = f(-,u(-)) in L'(J;X). Therefore
up = Swy, — Sw, i.e. u = Sw is a mild solution of (4).

To show that the J, can be chosen in the way described above, let

My ={teJ:l—-1<c(t)<l} forl>1.

mn
For every n > 1 we then find m,, > 2 such that J, := U M, satisfies A1 (J\ J,) < €,/2, and to
=1
everyl =1,...,m, thereis a closed B)(= By,) C M; with A\{(M;\B;) < 6—"2 such that fip,» x,
m

n

mn

¢/, and kg, are continuous. Let J, = U B and N,, = J,, \ Jp. Then A\ (N,,) < €,/my, hence
=1

A (J\ Jpn) < €, and J,, has the properties required above. Given .J,, we choose m, 11 > my,

and By, 11 D By, forl=1,...,m, to get J, C Jyy1 for alln > 1.

Due to ¢(t) < m, on J, D J, and c(t) > my on J\ Jp, the definition of f, shows that

|fu(t,z)] < c(t)(1 +|z|) for t € J, U(J\ Jy) and |fp(t,z)] < mp(1 + |z|) for t € N,. Hence

all f,, satisfy (8) with ¢é(¢) := c(t) + Z mpXn, (t) on J, and |é|; < |c|1 + Z €n < 00. O
n>1 n>1

Let us now consider multivalued perturbations of usc type under the condition
(y—7,x—T)y <k(t)|z —%|)° foraa. tcJ, allz,T € X,y € F(t,z),7 € F(t,T) (9)
with some k € L'(J).

Theorem 3.3 Let X be a real Banach space with uniformly convex dual and A be m-accretive
in X. Let J=1[0,a) CR and F:.Jx X — 2%\ () with closed convez values satisfying (3)
and (9) be such that all F(-,x) have a strongly measurable selection and F(t,-) is weakly usc

for almost all t € J. Then (1) has a unique mild solution for every ug € D(A).

Proof. 1. Given (r,) C (0,1] with r, \, 0, we approximate F' by single-valued f, as follows.

Fix n > 1, let (Uy)aea be a locally finite refinement of the open covering X = U B,, (r) and
zeX
(¢a)ren be a locally Lipschitz partition of unity subordinate to (Uy)xea. For every A € A

choose =) € X such that Uy C B, (z)), let g\ : J — X be a strongly measurable selection of
F(-,z)) and define f, by

fn(t,z) = Z ox(z)ga(t) on J x X.
AEA

All f,, are strongly measurable in %, hence also Carathéodory, satisfying

fn(t,z) €conv F(t, By, (z)) and |fp(t,z)| <c(t)(2+ |z|) on J x X. (10)
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Indeed, ¢y (z) > 0 for some A € A implies z € Uy C B,, (z) and therefore gy(t) € F(t, B,,(z))
as well as |gx ()| < c(t)(1 + ry + |z]).
Moreover, for every z € X there is § = d,(z) > 0 and L = L,(z) > 0 such that

|fn(ty) — fu(t,9)] < c(t)Lly —7| forallt € J and y,7 € Bs(x). (11)

To obtain (11), let > 0 be such that B, (z) intersects only finitely many Uy, and § € (0,7)
be such that the corresponding ¢, are Lipschitz continuous on Bgs(z).

2. Fix n > 1 and consider the initial value problem

u' + Au > fo(t,u) on [to,a], u(to) = uo (12)

for tg € [0,a) and uy € D(A). To get a local mild solution of (12), let , L > 0 be such that
(11) holds on Bj(ug), and define f by f(t,z) = f,(t, Rz) on J x X, where R is the usual

retraction onto Bgs(ug), i.e.

x if |z —wug| <96

Rx = —
o Uo—i—(sx al

if |z — ug| > 4.
|z — ug|
Then f is Carathéodory and satisfies (5) with k(¢) = 2Lc(t) since R is Lipschitz continuous
of constant 2. Hence Theorem 3.2 yields a solution u of (12) with f instead of f,, and u is
obviously a solution of (12) on [tg, o + h] for some h > 0.

Consequently, having (unique) local solvability of (12), Zorn’s lemma yields a noncontinuable
mild solution u of (12) with ¢, = 0, which is defined on all of J or on [0, 7) with some 7 < a.

In the latter case we get a contradiction since then tlim u(t) exists. Indeed,
Y

)] < 150uo| + [ e(s)(2+ fuls))ds on [0,7)

by (10), hence |u(t)| < R and | fp (¢, u(t))| < ¢(t)(2+R) on [0, 7) with some R > 0. This shows
that w € L(J; X), if we let w(t) = f,(¢,u(t)) on [0,7) and w(t) = 0 on [r,a]. Hence (2) has
mild solution Sw on J and (Sw)(t) = u(t) on [0, 7), i.e. tEITn_u(t) = (Sw)(7).

3. By the previous steps, initial value problem (12) with ¢, = 0 has a mild solution u,,
and |up|o < R for all n > 1. We claim that (uy,) is Cauchy in C(J; X).
Let € > 0. Since the duality map F : X — X* is uniformly continuous on bounded sets, there
is & > 0 such that ||F(z)—F(Z)|| < e for all z, T with |z|,|Z| < R+1 and |z—Z| < §. To obtain
an estimate for |u, () — un,(t)|, notice first that z € convF (¢, B,(x)) and Z € convF (t, B5(T))
for |z|,|Z| < R and p,p < 1 with p+ p < 4 imply

(z—%,2—-7) <2k(t)((p+ D)+ |z — T*) + 2(2 + R)c(t)e;
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here and in the sequel we write (-,-) instead of (-,-); since the semi-inner products coincide.
It suffices to consider z € convF(t, B,(z)) and Z € convF'(t, B5(Z)), hence

P p
z = Z Aiy;  with A; > 0 such that Z Ni=1, wy; € F(t,z;) with z; € B,(x),
i=1 i=1

1=
a q
Jj=1

j=1
Then ‘
(z—Zz—%) =Y > Nipj(yi —Y;. — T)
i=1j=1
p q p q
SO Ny — Ty —T5) + > Ny — Tjle
i=1j=1 i=1j=1
P q
<D dipgk()zi =T+ e(t)(2 + x| + [7] 4+ p +p)e
i=1j=1

< k() (|2 =] + p+7)2 + 2e(t) (2 + R)e.

hence the inequality above holds. By means of this estimate we obtain
¢
Jun (t) — um (8)|* < 2/0 (fn(5,un(5)) = fim (s, um(s)), un(s) — um(s))ds

t
< 4/ E(s)|un(s) — um(s)|2ds + 4(rp + rm)2|k|1 +2(2+ R)|c|1e
0

for all large m,n. Application of Gronwall’s lemma shows that (uy) is Cauchy in C(J; X),
hence u,, — u for some u € C(J; X).

To finish the proof let w, = f, (-, un(+)), hence u, = Swy, — u. Since |w,(t)] < ¢(t)(2+ R) a.e.
on J for all n > 1 and X is reflexive, we may assume w, — w in L'(.J; X) due to Lemma, 3.2,
and then Sw = u follows as in the proof to Theorem 3.1(b). Therefore, it remains to show
w € Sel(u). Given n > 0, we have wy,(t) € convF(t, B, (u(t))) a.e. on J for all large n by
(10), hence w(t) € conv F (¢, B,(u(t))) a.e. on J for every n > 0. Fix t € J such that F(t,-) is
weakly usc and the last inclusion holds, let z* € X* and notice that z*(convK) C conv z*(K)
for every K C X. Given € > 0, it follows that

2" (w(t)) € o* [V E (1, By (u(t)))] C somvla® (F(t, u(t))) + (—e, €)

for sufficiently small n > 0, since z* o F\(t,) is usc with compact convex values. This implies
z*(w(t)) € z*(F(t,u(t))) for every z* € X*, hence w(t) € F(t,u(t)). Consequently w €
Sel (u). O
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3.4 Perturbations of compact type.

In the important special case when X is a Hilbert space and A = 0y is the subdifferential
of a proper convex lIsc function ¢ : D, C X — IR, the semigroup generated by —A is always
equicontinuous and, in this situation, the semigroup is compact iff ¢ has compact sublevel
sets, i.e. {z € X : |z|? + p(z) < 7} is compact for all r > 0; see e.g. p.42f in Vrabie [112]. This
is one motivation to consider initial value problem (1) in case the semigroup generated by —A
is only equicontinuous. Let us also mention that —A generates an equicontinuous semigroup
if A is m-accretive and homogeneous of degree a > 0, o # 1; this is a direct consequence of
Theorem 1 in Benilan/Crandall [16].

Instead of compactness of the resolvents of A we then impose a compactness condition on

F. More precisely, we assume that F': J x D — 2% \ () satisfies
B(F(t,B)) < k(t)3(B) a.e. on J for all bounded B C D with k € L'(.J), (13)

where ((-) denotes the Hausdorff-measure of noncompactness introduced in §2.3. To obtain
existence of a mild solution within this situation, the fixed point approach is useful again
but this time it is harder to find a compact (convex) K C C(J; X) such that G(K) C K for
G = SoSel. If W C L'(J; X) is uniformly integrable then, directly by means of equicontinuity
of the semigroup, only equicontinuity of S(W) follows. This is the first part in

Lemma 3.6 Let A be m-accretive in a real Banach space X such that —A generates an

equicontinuous semigroup.

(a) Let W C LY(J; X) be uniformly integrable. Then S(W) C C(J; X) is equicontinuous.

(b) Let X* be uniformly convez, C C X compact and let W = {w € L'(J; X) : w(t) € C a.e.
on J}. Then S(W) is relatively compact in C(J; X).

This is essentially Theorem 2.3, respectively Theorem 3.1(ii) in Gutman [64]. Now the point
is whether (13) implies relative compactness of the sections {(Sw)(t) : w € W}. In case A =0

this can be achieved by means of the following estimate; see Proposition 9.3 in Deimling [42].

Proposition 3.1 Let X be a separable Banach space, J = [0,a] C R and (wy,) C L'(J; X)
such that |wy(t)| < o(t) a.e. on J for all k > 1 with some @ € L'(J). Then

ﬂ({/ﬂtwk(s)ds k> 1)) < /Utﬂ({wk(s) k> 1Y) ds on J (14)

Now the idea is to extend this estimate to the case A # 0. More precisely, we will show that

if X* is uniformly convex then

BH(Swg)(t) : k> 1}) < /Otﬁ({wk(s) :k>1})ds on J. (15)

38



This needs some preparation. Given () # Q C X, recall that 8o (B) is defined by

m
Ba(B) =inf{r >0: B C U B, (z;) for some m > 1 and z1,...,z, € Q}
i=1
for bounded B C €2, i.e. the centers of the covering balls are chosen from (2 instead of X.
Then ((B) < fa(B) < 26(B) for all bounded B C Q. Moreover, Oq has the following

representation.

Proposition 3.2 Let X be a Banach space and O # Q, C X with Q, C Q1 for n > 1

be such that B(Qy, N A) = 0 for bounded A C X and all n > 1. Let @ = U Q, and
n>1

B = {z},: k> 1} C Q be bounded. Then Bo(B) = lim Iim p(zy,Q,).

n—0 ko0

This is an extension of Proposition 9.2 in Deimling [42], where Q := X is assumed to be
separable and the €2,, are subspaces of finite dimension. Nevertheless, except for trivial mod-

ifications, the proof given there also works in the situation considered here. Now we have

Lemma 3.7 Let X be a real Banach space with uniformly convex dual and A be m-accretive
in X such that —A generates an equicontinuous semigroup. Let J = [0,a] C R and (wy) C
LY (J; X) such that |wg(t)] < o(t) a.e. on J for all k > 1 with some @ € L'(J).

Then (15) holds.

Proof. We may assume that X, = Span{wg(t) : t € J, k > 1} is separable, since all
wy, are strongly measurable. By Theorem V.2.3 in Diestel [47], which applies since X is in
particular reflexive, there is a closed separable subspace Y of X, containing Xy, and a linear
continuous projection P from X onto Y with ||P|| = 1. For bounded B C Y we therefore
have B(B) = By (B). Let Y,, C Y be finite-dimensional subspaces such that ¥ = W,

n

W, = {w e LY(J;Y,) : Jw(s)| < 2¢(s) a.e. on J}

and
Q, ={(Sw)(t) :w e W,} forfixed t € J.

We claim that ((€,) = 0 for all n > 1, where it suffices to consider €, for ¢ > 0. For

every € > 0 there is a closed J. C J such that ¢|;, is continuous (hence also bounded) and
J o(t)dt < e/2. Then

I\

Q5 = {(Sv)(t) : v =wX;, withw € W,}

is relatively compact by Lemma 3.6. Since z := (Sw)(t) € Q,, implies z¢ := (S(wX,))(t) €

and |z —z| < [ |w(t)|dt < e, we have Q,, C QF + B(0). This yields 5(Q,) < B(Q) +e=¢
T\Je
for all € > 0, i.e. 5(£2,) =0.
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Let Q@ = U €, and notice that (Swy)(t) € Q for all £ > 1. To see this, fix ¥ > 1 and define
n>1

the multivalued map H,, : J — 2¥» by
Hy(s) ={z €Yy, : |wg(s) —z| < p(wi(s),Y,)} forseJ

Evidently H,, has nonempty closed values, and H,, is measurable since wy has this property.
Therefore H,, admits a measurable selection v,, by Lemma 2.2, and |v,(s)| < 2¢(s) a.e. on J.
Moreover, v, — wy, in L'(J; X) as n — oo since wy(s) € Y a.e. on .J. Hence (Sv,)(t) € Q,
with (Svy,)(t) = (Swg)(t) implies (Swy)(t) € Q.
Consequently, Proposition 3.2 applies and yields

BHUSwe)(t) : k> 1}) < Ba({(Swg)(t) : k> 1}) = lim  Tim p((Swg)(t), 2n)-

n—00 k00

Now

p((Swr)(t), ) = inf{[(Swp) () — (Sw)(t)] : w € Wn}
< inf{/ot |lwi(s) —w(s)|ds:we Wy} = /Ut p(wg(s), Yy) ds,

where the last equality follows by the special choice w = v, with the measurable selection vy,
from above. Finally, application of Fatou’s Lemma, the dominated convergence theorem and
Proposition 3.2 (with Y instead of Q) yields

BU{(Sw) (@) : k> 1)) / lim Tm p(wg(s), V) ds

N—=0 ko0

= [ Bl k=13 ds = [ BlGug(s) k2 17)ds
0 0
|

By means of Lemma 3.7 we are able to obtain the following existence result for perturbations

of compact type.

Theorem 3.4 Let X be a real Banach space with uniformly convex dual and A be m-accretive
in X such that —A generates an equicontinuous semigroup. Let D =conv D(A), J =[0,a] C
R and F : J x D — 2%\ () with closed convex values satisfying (3) and (18) be such that
F(-,z) has a strongly measurable selection for every x € D and F(t,-) is weakly usc for almost
allt € J. Then (1) has a mild solution for every ug € D(A).

Proof. We look for a fixed point of G = S o Sel, and get a closed bounded convex set
Ky C C(J;X) such that G(K(y) C Ky by means of (3) as in the proof of Lemma 3.3. Let

Kyt = conv G(Ky,) forn > 0 and K := ﬂ K,. We are done if K is relatively compact since
n>0
then K is compact convex, and G : K — 2K\ () is usc with closed contractible values which
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follows along the same line as in the proofs of Lemma 3.3 and Theorem 3.3(b). Consequently
Lemma 2.1 then yields a fixed point of G, i.e. a mild solution of (1).

Application of Lemma 3.6 shows that K is an equicontinuous subset of C'(J; X), hence
K is relatively compact if the sections K(¢t) = {u(t) : v € K} satisfy S(K(t)) = 0 on J.
Let p(t) = B(K(t)) and pn(t) = B(Kn(t)) for n > 0. Then pny1(t) < B{(Sw)() : w €
Sel (Kj,)}). In order to apply Lemma 3.7 suppose, for the moment, that there is a sequence
(wg) C Sel (Ky) such that S({(Sw)(t) : w € Sel (K,)}) < 38({(Swg)(t) : k > 1}). Under this
assumption it follows by (13) and (15) that

puea() <3 [ Bluns): k2 1))ds <3 [ Ks)pals)ds on

notice that the last integral makes sense since all p,, are in fact continuous due to equicontinuity
of the K,,. Evidently p,(t) \, poo(t) on J, hence

0 < poo(t) < 2/0tk(s)poo(s) ds on J, pso(0)=0.

The same inequality holds with r(t) = /t k(8)poo(s)ds instead of ps (), hence r(t) = 0 on J
by Gronwall’s lemma. This yields poo :%, hencen p = 0 follows from 0 < p(t) < poo(t) on J.

To finish the proof it remains to show that for bounded B C X there exists a sequence
(zr) C B such that (B) < 38({zx : K > 1}), and it suffices to consider B C X with 8(B) > 0.
Let p = B(B)/3, r = B(B) — p and z; € B. Then there is 9 € B\ B;(z1) since otherwise
B C B,(z1) gives the contradiction §(B) < r. Given z1,...,z, € B with |z; — x| > r
for j # k, the same argument yields z,,11 € B such that |z; — z,,4q| > r for j =1,...,m.
By induction we therefore get a sequence (r3) C B with |z; — 23| > r for all j # k, which
evidently implies 3({z, : kK > 1}) > r/2. Therefore 3(B) = r+p < 26({z : k > 1})+5(B)/3,
hence B(B) < 38({zk : k > 1}). O

In the situation described by Theorem 3.4, the set of all mild solutions of (1) is a compact
subset of C(J; X) for every ug € D(A); recall that all fixed points of G are in the compact
set K. Consequently, the subsequent example shows that the method used above does not
work, without additional assumptions, in general Banach spaces. In this example we define
an m-accretive operator A in an appropriate Banach space X such that —A generates an

equicontinuous semigroup and the set of all mild solutions of
v € —-Au+C on|0,1], u(0) =0 (16)

is not relatively compact, although C' C X is compact. By means of this example it is also

clear that Lemma 3.7 is false without the extra assumption on X*.
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Example 3.2 Let X = {u € Cy(R4) : u(0) = 0} with the sup-norm | - |p. For u € X let

ut be defined by u'(z) = maxu(s), i.e. ut is the smallest increasing function such that

)

ut(z) > u(r) on Ry. Now define A : D — 2% \ (} by means of
Au={v—-u:ve X, vt =u} onD={u":ue X}

1. We claim that A is m-accretive such that —A generates an equicontinuous semigroup. For

this purpose let us first prove that
(ut +alu—u")" =ut  forallu e X and a > 0. (17)

Let v = v + a(u — u™). Then u < u' implies v < ™ hence also v+ < u*. On the other
hand, given z > 0 there is 7 € [0,z] with u*(z) = u(7r) which yields u™(s) = u(7) for all
s € [r,z]. This implies v*(z) > v(7) = u™ (1) + a(u(r) — u™ (7)) = u* (), hence (17) holds.

To show R(I + AA) = X for all A > 0, let w € X be given and v := w' + % Then
u:=ov" € D and v* = w" = u by (17), hence w_)\er € Au which means w € u + AAu.

Moreover, v = w™ is the only solution of w € u+ AAu, since w € 4 + AAd with 4 € D implies
w = G+ A — 1) for some ¢ € X with 91 = 4, hence 4@ = w™ by (17). Therefore, given A > 0,
Jy= (I +XA)"': X — D is well defined and given by Jyw = w™ on X. It remains to show
that A is accretive which follows if all J, are nonexpansive maps, i.e. [u™ —vt|g < |u — v]o
for all u,v € X. Suppose, on the contrary, that |u —v|g < |ut(z) — vt (z)| for some z > 0,
where we may assume u"(z) > v*(x). Since u™(z) = u(r) for some 7 € [0,z] and v*(z) >
v (1) > v(7), this gives the contradiction |u(7) — v(7)| < ut(z) —vT(z) < u(r) — v(7).
Evidently, Jyu = u* on X for all A > 0 and v = vt on D = D imply
St)u= lim Jju=u foralt>0andué€D.

n—oo

Hence the semigroup generated by —A is given by S(¢) = I|p for all £ > 0, which is obviously
equicontinuous.

2. Let J =[0,1], Jpy = [L, %) forn > 1,1=0,...,n — 1 and w, € L'(J; X) given by
wy(t) = (—=1)!p on J,;, where ¢ € X is the sawtooth-function defined by ¢(z) = [ 1(s) ds
on R, with ¢ = g:()(_l)lX[Ql—l,QH-l)' Evidently, w,(t) € C := {—p,¢} on J for all n > 1.

Hence (w,) C L'(J; X) is weakly relatively compact and also wy, — 0. Let u, = Sw, be the
mild solution of 4’ + Au > wy,(t) on J, u(0) = 0. We claim that (u,) is not relatively compact
in C(J; X). For a proof, it suffices to show that (u2;(1)) C X is not relatively compact.

We will only sketch the proof, since the details require lengthy but elementary calculations.

Fix an even n > 2 and let ¢, = % for £ > 0. Then by induction w.r. to k£ one can show

T

u(ty)(z) = %/(—z/))Jr(s)X[O’QkH](s) ds on Ry, for every k > 0. (18)

0
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To get this representation the first step is to solve the initial value problem
v e —Av+¢ on|0,1/n], v(0)= u(ty).

Since the operator A, defined by Au = Au — , is again m-accretive the integral solution
of this problem is given by the exponential formula, namely v(t) = n}gnoo jg‘mu(tk) where
Ju = Jy(u+Ap) = (u+Ap)T. Using representation (18) it turns out that v(t) = (u(tg)+tp)™
for t € [0,1/n], hence u(tx+1/n) = v(1/n) = (u(ty)+¢/n)". Then the next step is to take this
as the new initial value and to solve v' € —Av — ¢ on [1/n,2/n]. Evidently u(tx11) = v(2/n)

and a similar argument as above yields
1 1
ulter1) = ((u(ty) + ~9)" = ~¢) "
n n
Finally, it can be checked by elementary calculations that u(txy1) is again of the type given
by (18). Now it is easy to conclude that u,, for even n, satisfies
T 1
lun (1)(z) — %| < 5, on [0,2n], up(1l)(z) =1 on [2n,c0).
Therefore, uy;(1)(z) — 0 as 5 — oo uniformly on bounded intervals, but |ug;(1)|o = 1, hence

(u2;(1)) is not relatively compact which proves the claim. <&

The main ingredients in Example 3.2 are taken from a counter-example due to M. Pierre
which can be found in Vrabie [112] on p.224ff; there it is shown that a certain sequence of
approximate solutions for (16) is not relatively compact.

While Examples 3.1 and 3.2 show that, in general, assumptions on X (resp. on X*) are
needed, there are two relevant special cases where the fixed point approach works within
general Banach spaces: existence results are valid if A is linear, densely defined and m-
accretive, or if A : X — X is continuous and accretive. In fact, it is possible to combine these

results, i.e. to allow for “semilinear” operators A of the type

Au = Agu + g(u) on D(A) := D(Ay), (19)

where Ay : D(Ag) — X is linear, m-accretive with D(A4g) = X and g : X — X is continuous,
accretive. In this case A itself is also m-accretive (see Theorem 5.5), hence (2) has a unique
mild solution Sw for every w € L'(J;X) and uy € X. On the other hand, Theorem 3.5
applies to

u' + Agu = w(t) — g(u) on J, u(0) = uy. (20)
If u denotes the corresponding mild solution of (20), then it is easy to verify that u is also an
integral solution of (2), hence u = Sw. By means of this simple observation, it is possible to

exploit the semilinear structure of A, since Proposition 1.5 implies that u = Sw satisfies
t
u(t) = So(t)ug —|—/ So(t — s)(w(s) — g(u(s)))ds on J, (21)
0

43



where Sy(t) denotes the Cy-semigroup generated by —Aj. Actually, in this situation u €
C(J; X) is a mild solution of (2) iff u satisfies (21). Now we have

Theorem 3.5 Let X be a real Banach space and A be given by (19), where Ay : D(Ag) = X
is linear, m-accretive with m = X and g : X — X 1is continuous, accretive. Let J =
[0,a] CR and F : J x X — 2%\ () with closed convex values satisfying (3) and (13) be such
that F(-,x) has a strongly measurable selection for every x and F(t,-) is weakly usc for almost

all t € J. Then (1) has a mild solution for every ug € X.

Proof. 1. In the situation under consideration, the following variant of Lemma 3.7 holds.
Let (wy) C L'(J; X) satisfy |wy(t)| < o(t) a.e. on J with ¢ € L'(J) and let X; be a closed
separable subspace of X such that wy(t) € Xy a.e. on J. Then

BUSmW k2 1)) < [ fry({uns) 2 1))ds o J (22)

notice that such a subspace X always exists since the wy are strongly measurable. Inspection
of the proof of Lemma 3.7 shows that the same arguments apply if we replace Y by X
there, given that we are able to show £(2f,) = 0. Actually, we will show the following more
general fact. Let (wy) C L'(J; X) satisfy |wg(t)] < ¢(t) a.e. on J with ¢ € L'(J) as well as
wg(t) € C(t) a.e. on J with compact sets C(¢t) C X. Then {(Swy)(t) : k > 1} is relatively
compact for all ¢t € J.

Let (wi) be such a sequence, where we may assume wy — w in L'(J; X) due to Lemma 3.2.
We claim that Swy — Sw in C(J; X). By the remarks in front of this theorem, u; = Swy

and u = Sw satisfy

k(1) = Softuo + [ So(t = 5)(un(s) — glur(s)))ds o J,
respectively .
u(t) = So(tyun +/0 So(t — s)(w(s) — g(u(s)))ds on J.
Consider first the “harmless” parts
zp(t) = /Ot So(t — s)wg(s)ds and z(t) = /Ot So(t — s)w(s)ds on J.

Then 2z — z in C(J;X), which can be seen as follows. Since So(t — )w(-) is strongly
measurable, the operators Sy(¢) are nonexpansive and B({w(s) : k > 1}) < B(C(s)) =0 a.e.
on J, application of Proposition 3.1 (with an appropriate separable subspace X instead of
X) shows that the sections {z(t) : k > 1} are relatively compact. Given 0 < s < t,t < a, the

inequality for integral solutions implies
t t
2(t) — @] < [So(t = 5)2(5) — So(F — 5)2(5)] +/ o(7)dr +/ o(7)dr
t t
< Iollt = anls) — as) + [ p(r)dr+ [ gy
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Now if (z;) is not equicontinuous, then |zj(tx) — zx(tx)| > €0 > 0 with ¢ — ¢, & — ¢
and ¢t = 0 is not possible. Since (z(s)) is relatively compact for every s € J, the estimate
above yields the contradiction €y < 2 / t o(7)dr for all s € [0,t). Therefore (zj) is relatively
compact in C'(J; X). Let (z,) be a consvergent subsequence of (z;). Then its limit is z, since
x* (2, (t)) = x*(2(t)) for every z* € X* and ¢t € J. Hence z is the only accumulation point of
(zx) and therefore z; — z.

Now consider
vg(t) = —/0lt So(t — s)g(ug(s))ds and w(t) / So(t — s)g(u(s))ds on J.
Evidently vy — v = ug —u — (2 — 2z), v is the mild solution of
v+ Agv = —g(u(t)) on J, v(0) =0,

and vy, is the mild solution of the same initial value problem with g(u(t)) instead of g(u(?)).
Exploitation of the inequality for integral solutions and the fact that ¢ is also s-accretive

yields .
vk (t) —v(t)] < /0 [k (s) — v(s), —g(uk(s)) + g(u(s))]ds

< /t[uk() (u(s) + ex(5)), ~g(u(s) + ex(s)) + g(u(s)lds

/ lg(u(s) + ex(s)) — g(u(s))|ds with ey, := 2z — 2.

Hence |vy — v|o — 0 by the dominated convergence theorem and therefore
lu, — ulo < |og —vlo + |2k — 2[o = 0,

ie. Swy — Sw in C(J; X) as claimed above.

2. As before, we consider G = S o Sel and get a closed bounded convex Ky C C(J; X)
such that G(Ky) C Ko by (3). Let K41 = convG(K,) and p,(t) = B(K,(t)) on J for all
n > 0. Obviously pn(t) \ pc(t) > 0 for every ¢t € J with some p(-), and we claim that
Poo(t) = 0 on J. Now, since measurability of p, is not clear, let r,, : J — R be measurable
with r, < p, such that r < p, with a measurable r : J — R implies r < r, a.e. on J. To
obtain such functions r,, fix n > 0 and notice that p, is bounded since Ky C Bgr(0), say.
Hence there are 1, € L'(J) with 1), < p, such that

[ ntyit > supf [ eyt s p € 1), < pu.
J J

The 1, can be chosen such that 1y < 1,41 and then r, = sup ¢, does the job.
E>1
We will show that

t
pPn+1(t) < 12/ k(s)rp(s)ds on J for all n > 0. (23)
0

45



Fix t € J, where it suffices to consider t > 0. Then p,+1(t) = S(G(K,)(t)) and by the last step
in the proof of Theorem 3.4 there is (z;) C G(K,)(t) such that p,41(t) < 38({zk : k > 1}).
Of course zp = (Swi)(t) with wy € Sel(uy) for certain uy € K. Since |wg(s)| < ¢(s)(1 + R)

a.e. on J and Xy = span( U wi(J) U U uk(J)) is separable (eventually after a change of
k>1 k>1
the wyg on a null set), inequality (22) applies and yields

t
pun(t) < 3B({ai k> 1) <3 [ fxy ({wels) k> 1})ds.
Exploitation of (13) and Sx,(B) < 28(B) for bounded B C X, implies

Bxo({w(s) : k 2 1}) < 2k(s)B({ur(s) : k = 1}) < 2k(s)Bx, ({ur(s) : k = 1}),

and v(-) := Bx,({uk(-) : £ > 1}) is measurable due to the representation of fx, given in
Proposition 3.2. Moreover v(t) < 26(K,(t)) = 2pn(t) on J, hence v(t)/2 < ry(t) a.e. on J

and therefore (23) holds. Consequently, application of Fatou’s lemma shows that

0 <reoft) <12 /Otk(s)roo(s)ds on J

¢
for roo(+) = lim 75 (-). Since the same inequality holds for r(t) = / k(s)reo(s)ds instead of
0

n— 00
Teo, Gronwall’s lemma implies 7 = roc = 0. Then py(t) = 0 on J is a consequence of (23).

The arguments given so far imply 3(K(t)) = 0 where K = ﬂ K,. To show K # (), pick
n>0
up € G(Ky) C Ky for every n > 0. Then S({un(t) : n > 1} = B({un(t) : n > m}) < pp(t)

on J for all m > 1, hence (u,) C G(Kjy) has relatively compact sections. Evidently u, = Swy,
for certain wy, such that |wy,(t)] < @(t) := ¢(t)(1 + R) a.e. on J, hence the inequality for

integral solutions implies

an(6) = un (] < 1501t = F)un(s) — wn(s)| + [ o + [ p(ryr

for all 0 < s < t,t < a. This yields equicontinuity of (u,). Hence u,, — u in C(J;X) for
some subsequence, and then u € K. The same arguments show that G(K) is equicontinuous,
hence relatively compact. Therefore, K = conv( (K) is nonempty and compact convex with
G(K)CK.

It remains to show that G has closed graph. If this holds then Lemma 2.1 yields a fixed
point of G, i.e. a mild solution of (1); recall that G(u) is contractible by step 3 of the proof
to Lemma 3.3. Let v, € G(u,) with u, — v and v,, — v in C(J;X). Then v, = Sw,
with w, € Sel(uy), hence |w,(t)] < () a.e. on J with ¢ € L'(J) by (3), and (13) implies
B({wn(t) : n > 1}) = 0 a.e. on J. We may then assume w, — w in L'(J;X), and in this

situation Sw, — Sw in C(J; X) has been shown in step 1 of this proof. We are done since
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Sel is weakly usc with weakly compact convex values by step 2 of the proof of Lemma 3.3
and therefore w € Sel (u), i.e. v = Sw € G(u). O

In Theorem 3.5, time-dependence of g has been excluded only in order to remain within the
framework of m-accretive operators. Let us briefly explain how an extension to the time-
dependent case

A(t)u = Apu + g(t,u), te€ J, ue D(A(t)) := D(Ag) (24)

with Ag as in Theorem 3.5 and Carathéodory g : J x X — X can be achieved. If the
g(t,-) are accretive then A(t) is m-accretive for every ¢ € J, but this situation is not covered
by the existing theory for time-dependent m-accretive operators where further assumptions

concerning the ¢-dependence are needed (see e.g. Pavel [92]) to obtain mild solutions of
u' + At)u = w(t) on J, u(0) = ug (25)

for w € L'(J; X). Therefore it is favorable to exploit the semilinear structure as explained in
front of Theorem 3.5: if A(t) is of the type given above, then v € C(J; X) is said to be a mild
solution of (25) if

u(t) = So(t)ug + /0lt So(t — s)(w(s) — g(s,u(s)))ds on J,

where Sy(¢) is the semigroup generated by —Ag. By Theorem 3.2 and Proposition 1.5 it is then
clear that (25) has a unique mild solution u =: Sw for every w € L'(J; X), if g also satisfies
a growth condition of type (6). Moreover, if v and @ are mild solutions of (25) corresponding

to w and w, respectively, it is easy to check that
t
lu(t) —a(t)| < |u(s) —a(s)] +/ |lw(t) —w(r)|dr for 0 < s<t<a
S

holds again. Now an inspection of the proof of Theorem 3.5 shows that all arguments (with

obvious modifications) also apply in this time-dependent setting. We therefore have

Theorem 3.6 Let X be a real Banach space, J = [0,a] C R and A(t) be given by (24), where
Ag : D(Ag) — X s linear, m-accretive with D(Ag) = X and g : J x X — X is Carathéodory
such that g(t,-) is accretive for all t € J and |g(t,z)| < d(t)(1+|z|) on J x X with d € L'(J).
Let F: J x X — 2%\ () with closed convex values satisfying (3) and (13) be such that F(-,z)
has a strongly measurable selection for every x and F(t,-) is weakly usc for almost all t € J.

Then (1) has a mild solution for every ug € X.

3.5 Remarks

Remark 3.1 Theorems 3.1-3.4 remain valid if A is m-w-accretive for some w € R, i.e. if

A, = A+ wl is m-accretive, since the corresponding result applies to A, and F, := F + wl
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(resp. fu:= f+wl) instead of A and F (resp. f) in each of these cases. Notice in particular
that if —A generates an equicontinuous or compact semigroup then this property is inherited
to the semigroup generated by —A,,, which can be checked easily by means of the inequality
for integral solutions and the fact that (I + XA,)~' = (I + 1+/\)\w A)~lo 1—1—1)\0.)[' This leads to
a mild solution of the original problem, since u is a mild solution of u' + A,u > w(t) + wu for

w € L'(J; X) iff u is a mild solution of u/ + Au > w(t).

Of course similar modifications of Theorems 3.5 and 3.6 can be obtained as well. For instance,
Theorem 3.6 remains valid if g(¢,-) is w(t)-accretive with w € L'(J), i.e. if —g satisfies a

dissipativity condition of type (5).

Remark 3.2 Theorem 3.1 is a compilation of essentially known results that are mentioned
below; the unified proof by means of Lemma 3.3 is based on Bothe [23]. A local version of
Theorem 1 can be obtained as follows: Let F be defined on J x D, with D, = B,(z¢) N D(A)
and suppose that the corresponding assumptions of Theorem 3.1 hold. Then Theorem 3.1
applies to F' given by F(t,z) = F(t, P(R(x))), where P is as in step 1 of the proof of Lemma 3.3
and R is the radial retraction onto Bs(zg) with § > 0 such that P(Bgs(zg)) C By(zg). This
yields a mild solution of (1) with F which is a local mild solution of (1) with F, since
F(t,z) = F(t,z) on J x (Bs(zo) N D(A)). Such a local version of part (b) of Theorem 3.1
comes close to Theorem 3.3.1 in Vrabie [112]; there it is assumed (in difference to the conditions
imposed in Theorem 3.1(b)) that X is separable and the F(-, z) are measurable.

Theorem 3.1(b) includes Theorem 2.1 in Tolstonogov/Umanskii [105], where the F'(¢,-) are
assumed to be e-d-usc, and part (¢) contains Theorem 2.2 of the same paper; there the differing
assumptions are separability of X and measurability of F(-,u(-)) for every u € C(.J; D(A)).
Let us note that Theorem 3.1(d) remains valid if A is of the type A = Ag + g, where A is
linear, m-accretive, densely defined and g : X — X is continuous, accretive. This follows by
reduction to g = 0: since all fixed points of G = S o Sel are contained in the compact set
K given in the proof of Lemma 3.3, we may assume the g is bounded. Then Theorem 3.1(d)
applies to Ag and Fy := F — g instead of A and F, and the corresponding solution is a
solution of the original problem as well. This extension of part (d) contains Theorem 2.3 in
Tolstonogov/Umanskii [105] where again separability of X and measurability of F'(-,u(-)) for
every u € C(J; D(A)) is assumed.

Under fairly restrictive assumptions one can exploit additional knowledge about the regu-
larity of mild solutions of (2) to obtain a strong solution of (1). To be more specific, consider
the situation described by Theorem 3.1(b) in case X is a Hilbert space, and let u be a mild so-
lution of (1). Then Proposition 3.8 in Brezis [29] says that w is a strong solution if dim X < oo,
while the same conclusion follows from Theorem 3.6 in Brezis [29] if A = J¢ with a proper
Isc convex function ¢ and ¢ € L?(.J) in (3). The corresponding existence results for (1) have

been established in parts IIT and IV of Attouch/Damlamian [6].
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Remark 3.3 If Theorem 3.3 is specialized to the case A = 0, the resulting solution of (1)
is obviously a strong solution. Therefore Theorem 3.3 extends Theorem 10.5 in Deimling
[42], where X is a Hilbert space and the F'(¢,-) are assumed to be usc; parts of the proof of

Theorem 3.3 are taken from this reference.

Remark 3.4 Lemma 3.7 and Theorem 3.4 are taken from Bothe [23]. If F' is only defined
on J x D, with D, = B,.(z¢) NconvD(A), a corresponding local version follows immediately,
since (3) on J x D, implies |u(t) — ug| < r on [0,b) for every mild solution u of (1) if b > 0 is
sufficiently small. Notice that the F(¢,-) have to be defined on a convex set to obtain the con-
vex (compact) K, and here we cannot use the map P from the proof of Lemma 3.3 to extend
F to all of J x X, since it is unclear whether this extension will satisfy (13). On the other
hand, in applications where X* is uniformly convex, X will usually also have this property
and in this case D(A) is convex. Apart from this detail, such a local version of Theorem 3.4 is
a considerable improvement of Theorem 3.6.1 in Vrabie [112], where local mild solutions are
obtained in the following situation: X separable with X* uniformly convex, A m-accretive
such that — A generates an equicontinuous semigroup, F : [a,b] x V — 2X \ 0 jointly usc with
closed convex values satisfying 3(F([a,b] x B)) = 0 for all bounded B C V, where V is open
in D(A) with ug € V.

Specialized to the case of a single-valued compact perturbation, Theorem 3.4 (in its local

formulation) becomes essentially Theorem 3.3 in Gutman [64].

Remark 3.5 Theorems 3.5 and 3.6 are new; the latter is a combination of Theorems 3 and 4
in Bothe [23]. The usual local version of Theorem 3.5 extends Theorem 2 in Schechter [100],
where single-valued compact perturbations have been considered.

If Theorem 3.6 is specialized to A9 = 0 and single-valued F' = {f}, it includes the main
result (Satz 2.3) in §2 of Schmidt [101]. There it is assumed that f,g : J x X — X are
continuous and bounded such that G(f(J x B)) < LB(B) for all bounded B C X and g¢(¢,-)
is w-accretive. The latter is an extension of Theorem 2 in Volkmann [108], which is the local
version for compact f. Remember Remark 3.1 and observe that mild solutions are even con-

tinuously differentiable in this case.

Remark 3.6 Let us add some information concerning problem (1) in case of lower semicon-
tinuous perturbations. If F' is Isc with closed convex values the problem can be reduced to
the single-valued continuous case by application of Michael’s selection theorem. In the more
interesting case when the values of F' are only closed and bounded, this simple reduction is
not possible but selection results are still helpful. For instance if F' : .J x D(A) — 2%\ ( is Isc
with closed bounded values such that (3) is satisfied, one may use the fixed point approach.
Due to the considerations in §3.2 it suffices to consider G = S o Sel on a compact convex

set K C C(J;X) if the semigroup generated by —A is compact, say. In this situation it is
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possible to prove that Sel : K — 25 (/iX)\ ) is Isc, and the values Sel (u) need not be convex
but are decomposable, i.e. wi,wy € Sel(u) implies X qw; + (1 — X4)we € Sel(u) for every
measurable A C J. Due to these properties of Sel(-), the selection theorem in Fryszkowski
[57] yields a continuous selection h : K — L'(J; X) of this map, hence (1) has a mild so-
lution by Schauder’s fixed point theorem. The corresponding existence result is essentially
Theorem 3.1 in Mitidieri/Vrabie [84]. Existence of strong solutions in the finite dimensional
case X = (R",]|- |2) was obtained before in Colombo/Fonda/Ornelas [36] by means of similar

arguments for jointly measurable F' such that F is lsc in z.
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84 Invariance and Viability

In the present section we concentrate on evolution problems with single-valued perturbations.

Let A be an m-accretive operator in a real Banach space X, J =[0,a] C Rand f : JXD(A) —
X. Given a “tube” K : J — 2% with closed values K () such that K4(t) := K(t)ND(A) # 0

on J, we look for a mild solution u of

u' + Au > f(t,u) on J, u(0)=ug (1)

that satisfies the time-dependent constraints u(t) € K4(t) on J; if this holds u is said to be
a viable solution. Now notice that any reasonable sufficient condition will imply that, given

to € [0,a) and uy € K4(to), the initial value problem
u' + Au > f(t,u) on [to,a], u(to) = ug (2)

has a mild solution such that u(t) € K4(t) on [tg,a]. In this situation the tube K(-) is called
weakly positively invariant or, alternatively, K(-) is said to have the viability property (for
u' + Au > f(t,u)); here “weakly” refers to the fact that other solutions may leave the tube.
We say that K(-) is positively invariant (for u' + Au > f(t,u)), if all solutions starting in
gr (K 4) remain in this set.

In case we are interested in existence of a viable solution of (1), it is of course possible to
incorporate the constraints into the evolution problem, simply by considering f to be defined

on gr (K 4) only.

4.1 Approximate solutions

Consider initial value problem (1) in the situation described above with continuous right-hand
side f : gr (K4) — X. Then a necessary condition for weak positive invariance of K(-) can be

obtained as follows. Suppose that (2) has mild solution u and let v be the mild solution of
v’ + Av 3 f(to,uo) on [to,a], w(to) = uo.

By continuity of f and w it follows that

1 1 [loth
Flutto+) = oo+ 1) < 7 [ 1t u(®) = f(to,uo)ldt =0 as h— 0+
0

hence

lim hilp(Sf(to,uo)(h)umKA(tO +h)) =0,
h—0+

where S (-) denotes the semigroup generated by —A, with A,z := Az —z on D(A,) = D(A).
Consequently,
f(t,z) € To(t,x) for all (t,2) € gr(K4) with t < a (3)
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is a necessary condition for weak positive invariance of K(-), where TI’? is defined on gr(K4)N
([0,a) x X) by

T (t,2) = {z € X : lim b~ p(S,(h)z, Ka(t + h)) = 0}.
h—0+

In the special case A = 0 this becomes

Ty(t,x) ={z€ X : lim h 'p(z +hz, K(t +h)) = 0},
h—0+

and if, in addition, K (¢) = K holds then T (t,z) = Ty (z) is the Bouligand contingent cone
with respect to K at the point z introduced in §2.3.
Since all K (t) are closed by assumption, it is also natural to assume that gr(K 4) is closed

from the left, i.e.
(tn) C J with t,, /'t and z, € K4(t,) with z, — z implies z € K 4(t);

notice that if there are mild solutions wu,, with u,(t,) = x,, then K4(t) 3 u,(t) — .

In the subsequent sections we will show that the “subtangential condition” (3) is also
sufficient for existence of a (viable) solution in several situations. The next result is a basic
step in this direction, since it provides appropriate approximate solutions.

In the sequel u(- ;tg, ug, w) denotes the mild solution of
u' + Au > w(t) on [ty,a], u(ty) = ug, (4)

and if w € L'(J; X) then wu(- ;tg,ug, w) is short for u(- 510, U0, W)[1,q])- With this notations,
the semigroup property of solutions reads
u(t; Ty ug, w) = u(t; 7, u(T; 7, up, w),w) forall0<7<7<t<a.
If to = 0 and wuy is fixed we simply write u(- ; w) instead of u(- ; g, ug, w).
Lemma 4.1 Let A be m-accretive in a real Banach space X, J =1[0,a] CR and K : J — 2X
be such that KA(0) # 0 and gr(Ka) is closed from the left. Let f : gr(Ka) — X be bounded
and such that (3) is satisfied. Then, given ug € K 4(0) and € > 0, there is w € L*(J; X) such
that
w(t) € f([Jre X Bye(u(t;w))] Ngr(Ka)) a.e. onJ (5)
with v =1+ a, where Jyc = [t — e, t]N J.
Proof. Let uy € K4(0) and € > 0, where we may assume € < 1. Consider the set M€ of
approximate solutions defined by
M = {(n,0,P,b) : b€ (0,a],

v:[0,b] = X with v(b) € K4(b),v(]0,b]) relatively compact,

w : [0,b] = X strongly measurable such that (5) holds a.e. on [0, b],

P C [0,b) with 0 € P,b € P such that 7 € P implies v(7) € K(7)

and |v(t) — u(t; 7,v(7),w)| < €(t — 7) on [1,b]},
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and notice that we are done if M€ contains an element with b = a.

1. We claim that M€ is nonempty. Since zg := f(0,ug) € T;(‘(O,u(]), there is h € (0, €]
such that y; 1= S, (h)ug satisfies p(y1, K4(h)) < 3eh, hence there is u; € K4(h) such that
leo| < € for e := 2. Let to = 0, t1 = tg + h and

Q)(t) = Szo(t — t(])U(] + (t — t(])e(] on [to,tl].

We may assume |v(t) — ug| < € on [tg, 1] if A > 0 is chosen small enough. By induction, we

obtain sequences (tx), (ux), (zx) and (ex) such that

tk M too < a, up € Ka(ty), zx = f(tg, u), } (6)
er = Ugy1 — Sz (thp1 — te)ug, lex] < e
For k > 0 we then let
v(t) = 8o, (t — tr)up + (t —tg)ex  on [ty, thy1], (7)

and may assume tj11 — t; < € as well as |v(t) —ug| < € on [tx,tx+1] by appropriate choice
of the t. Let P = {t; : k > 0} and define w € L'([0,%]; X) by means of w(t) := z if
t € [tk, tkr+1) and w(te) = 0. We will show that

|v(t) — u(t; t, uk, w)| < et —tg) on [tk,te) for all k> 0. (8)

Notice that (8) implies |v(t) — u(t;w)| < et on [0,%), hence (5) holds a.e. on [0,ts] by
definition of w. Evidently, (8) holds if

lo(t) — u(t; by, up, w)| < et —tx) on [t;,tj41] 9)

for all j > k > 0 and (9) is valid for j = k, by construction of v. Suppose that (9) holds for
fixed K > 0 and 5 = m — 1 > k. Exploitation of

u(t;tkaukaw) = u(t; tmau(tm;tkaukaw)azm) on [tm,thrl]

and

yields
| (t) — u(t; tg, ug, w)| |t — w(tm; s Uk, )| + (E — tm)|€m|
(b — tr)e + (£ — tym)e
for all t € [tm, tm+1], hence (9) holds for j = m. By induction (9) is valid for all j > k£ > 0.

Since (8) implies

<
<

v([0,t00)) C Ck + (too — tx)Bc(0)  for all k > 0,
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where Cj := v([0,tx]) U u([tk, toc); tk, uk, w) is relatively compact, it follows that v([0,%x))
is relatively compact. Let (uy;) be a convergent subsequence of (uyx) = (v(fx)) and define
V(too) := jli)nolo ug;. Then v(tx) € Ka(too) since gr (K4) is closed from the left, and therefore
v : [0,t00] — X has those properties required in the definition of M€. Moreover, it is easy to
check that (8) is also valid on [tg, t], and therefore (v, w, P,ts) € M€.

2. M€ # () by step 1, and we shall use Zorn’s lemma to obtain an element of M€ with
b = a. For this purpose define a partial ordering on M€ by (v,w, P,b) < (v,w, P, b) if

b<b,v=1von]0,b, w=1w a.e. on[0,b], PCP.

To be able to apply Zorn’s lemma we have to show that every ordered subset M C M€ has
an upper bound in M¢€. Let

b* = sup{b € (0,a] : (v,w, P,b) € M for some v, w, P}.
In case the ”sup” is actually a "max”, i.e. if there is (v, w, P,b*) € M, we let
P*={7 €[0,b%) : there is (v,w, P,b*) € M with 7 € P}.

Evidently, (v, w, P*,b*) is an upper bound and (v, w, P*,b*) € M* is easy to check.
In the remaining case there is a sequence (vy,, wy, Py, by,) C M with b,  b*, hence P,, C P, 41,

Up4+1 = vy on [0,b,] and wy41 = wy, a.e. on [0,b,] for all n > 1. We then let

P = U P,, v*(t) =wn(t) on [0,b,], w"(t) = wy(t) on [0,by].
n>1

Suppose, for the moment, that v*([0,5*)) is relatively compact. We let v*(b*) = lim v*(by;)

j—00
where (v*(by;)) is a convergent subsequence of (v*(b,)), and claim that (v*,w*, P*,b*) €

M¢€ is an upper bound for M. Evidently, (v*,w*, P*,b*) is an upper bound for M, since
(v,w, P,b) € M implies b < b, hence (v, w, P,b) < (vn,wn, Py, by,) for some n > 1. To check
that (v*,w*, P*,b*) € M€ is also easy; notice that 7 € P* implies 7 € P,, and v*(7) = v, (1)
for all n > n,. So, it remains to prove relative compactness of v*([0,5*)). But the latter
follows by the corresponding arguments from step 1, where this time we take any sequence
(tx) C P* with t; 7 b* and uy := v*(t); notice that (8) then holds with v* instead of v.
Consequently, there is a maximal element (v*,w*, P*,b*) € M¢ and we are done if b* = a.
Suppose b* < a. We then let ty = b*, ug = v*(b*) and repeat the construction of step 1 to
obtain the sequences from (6) and function v from (7). Let
B(t) = v*(t) on [0,b*], ©(t) =v(t) on [b* ts), b= too,
w(t) = w*(t) on [0,b%], W(t) =z on [t,tks1], P = P*U{t;:k>0}.
Then 7([to, t)) is relatively compact again, and, as before, we let ¥(to) := lim (;) for an

]*)OO
appropriate subsequence (t;).

54



To obtain (7,7, P,b) € M€ we show that 7 € P* and t € (tg, ) implies |5(t) —u(t; 7,9(7), w)|
< €(t — 7); the other cases as well as the remaining properties are rather obvious. Due to (8)

and the properties of (v*, w*, P*,b*) we have
[5(t) — u(t; 7,0(7), w)|
< Ju(t) = u(t; to, ug, w)| + |u(t; to, uo, w) — u(t; to, u(to; 7,0 (1), w), w)|
< et —tg) + [v*(to) — u(to; T, v* (1), w)| < e(t —to) + €(to — 7) = et — 7),

hence (,w, P,b) € M€ with b > b*, a contradiction. Consequently, b* = a for every maximal
element of MF€. O

Observe that f need not be continuous in Lemma 4.1. This fact will be important in case of

multivalued perturbations later on.

4.2 Locally Lipschitz perturbations

In case f is locally Lipschitz continuous, the "subtangential condition” (3) is also sufficient

for existence of a solution in K (), provided that f satisfies the growth condition
|f(t,z)] < e(l+|z|) on gr (K4) with some ¢ > 0. (10)

Theorem 4.1 Let A be m-accretive in a real Banach space X, J =1[0,a] CR and K : J —
2X be such that KA(0) # 0 and gr(K 4) is closed from the left. Let f : gr(Ka) — X be locally
Lipschitz continuous, satisfying (3) and (10). Then (1) has a unique mild solution for every
ug € K4(0).

Proof. It suffices to establish existence of a mild solution, since uniqueness is an obvious
consequence of the local Lipschitz continuity.

1. Let ug € K4(0) be fixed. To simplify subsequent arguments, we first reduce to the case
when f is bounded on gr (K 4). For this purpose, let 7(-) be the solution of

r'=1+c(1+r+|S{#)ugl) onJ, r(0)=0,
and define

A J—

K(t) := K(t) N By (S(t)uo) and Ka(t) := K(t) N D(A) forte€ J.

Evidently ug € K 4(0), gr (K4) is closed from the left and f is bounded on gr (K 4). In order
to show that (3) also holds for K instead of K, let t € [0,a), z € K4(t) and z := f(t, ). Due
to z € T}?(t, x) there are sequences h, — 0+ and e, — 0 such that

S, (hn)x + hpen, € Ka(t+ hy) for alln > 1.
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By means of the estimate
|S:(hn)x 4+ hpen — S(t+ hyp)uo| <|S.(hn)z — S(hy)z| + |2 — S(t)uo| + hnlen] <
hnlf(t,2)] +7(t) + hnlen| < 7(t) + hnc(l +7(t) + [SE)uol) + hnlen| < 7(t 4+ hn),

which holds if n > 1 is sufficiently large, this implies
S, (hn)x + hpe, € KA(t + hy) for all large n > 1,

hence (3) also holds for K. Consequently, all assumptions of Theorem 4.1 are also satisfied if
K is replaced by K.

2. We are done if (1) admits a local mild solution. Indeed, if this holds we obtain
a noncontinuable mild solution by means of Zorn’s lemma, and this solution is necessarily
defined on all of .J since f is bounded on gr (K 4).
Fix § > 0 such that f is Lipschitz (say of constant L) on ([0, 8] x Bgs(ug)) Ngr (K4), and let
b € (0,6] be such that r(t) 4+ |S(t)ug — uo| < § on [0,b]. Let K be the restriction of K to
J =1[0,b]. Then f is Lipschitz of constant L on gr (K 4), since K (t) = K(t) C B,y (S(t)ug) C
Bj(ug) on J.
Consider e, \, 0. Application of Lemma 4.1 yields w, € L*(J; X) such that

W (t) € f([Jren X Bre, (un(t))] Ngr (Ka)) ae. on J

with y =1+ b and jt’fn =[t—en,t]N J, where u,, is the mild solution of

un, + Ay D wy(t) on J, u,(0) = ug.

The former inclusion implies wy,(t) = f(7,(t),vn(t)) a.e. on J with certain function 7,, v,
such that v, (t) € KA(Ta(t)), t — €, < Tn(t) <t and |u,(t) — v, (t)| < ve, on J. Therefore

L(la(t) = ()] + [on(t) — vm(2)])
Lty (t) — um(t)] + L(1 + ) (e + €,) a.e on J.

wn(t) —wn(t)] <
<

Consequently ¢(t) := |up(t) — um(t)| satisfies

o)< [ (90 + (047 en+en))ds on . p(0) =0,

Application of Gronwall’s lemma shows that (u,) is Cauchy in C(J; X), hence |u, — u|g — 0
for some u € C(J; X) with u(0) = ug. Evidently 7,(t) — t— and v, (t) — u(t) as n — oo for
every ¢ € (0,b], which implies u(t) € K 4(t) on J since gr (K 4) is closed from the left. The same
argument shows that wy, (t) = f(7.(t), v, (t)) = f(t,u(t)) a.e. on J, hence w, — f(-,u(-)) in
L'(J; X). Therefore u is a mild solution of (1) on .J. O

In the situation of Theorem 4.1 the mild solution u(-;ug) depends continuously on uy € K 4; a
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proof in case f is Carathéodory and locally Lipschitz in « will be given in Theorem 4.4 below.
Let us note in passing that the necessary condition K4(t) # () on J is of course implicitely
contained in the assumptions of Theorem 4.1. Nevertheless, we did not include this condition
explicitely, since the reduction to bounded f becomes easier this way.

Theorem 4.1 immediately yields the following characterization of positive invariance.

Corollary 4.1 Let A be m-accretive in a real Banach space X, J=[0,a] CR, K : J — 2X

be such that gr (K 4) is closed from the left and f : Jx D(A) — X be locally Lipschitz satisfying
(10). Then K(-) is positively invariant for v’ + Au > f(t,u) iff (3) is valid.

In several applications it happens that for an appropriate choice of the K(¢) these sets are
positively invariant for the resolvents of A. Then it is helpful to know that the subtangential

condition can be separated, by which we mean that
JK(t) C K(t) for A > 0,t € [0,a) and f(t,z) € Ty (t,z) for t € [0,a),z € Ka(t) (11)

implies (3). We don’t have a simple direct proof of this fact, but it is not difficult to show

that (11) implies the "weak range condition”

lim h~"p(z + hf(t,z), (I + hA)(K(t+h) N D(A))) =0 for t € [0,a),z € K(t), (12)
h—0+

and the latter in turn implies (3). This is the contents of the next result which allows for

continuous f.

Lemma 4.2 Let A be m-accretive in a real Banach space X, J = [0,a] C R, K : J — 2%
with gr (K a) closed from the left, and f : gr(Ka) — X be continuous. Then (11) implies (12)
and the latter implies (3).

Proof. 1. To establish the first implication, let ¢t € [0,a) and z € K 4(¢). Then, given € > 0,
there is h € (0, €] and e € X with |e| < e such that z + h(f(¢t,z) +e) € K(t + h), hence

Jn(z 4+ h(f(t,z) +e)) € K(t+ h) N D(A).

Consequently,
p(z + hf(t,z), (I +hA)(K(t+h) N D(A))) < he

and therefore (12) holds.
2. To obtain the second implication, let ¢y € [0,a) and z¢ € K4(t9). Evidently (3) holds
if, given n € (0,1], there is § € (0,7] such that

P(Sf(to,20)(0) 0, Ka(to +0)) < 4dm. (13)
Fix n € (0,1] and let r € (0,n] with ¢g + r < a be such that
Sup{|f(t0a$0) - f(t7$)| e [t(],t() + T]ax € KA(t) ﬁFT(:EO)} <7
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Choose (z,y) € gr (A) such that |zg —z| < r/4 and let o = 3r(2+|f(to, z0)| + |y|)~'. We are

going to construct local e-DS-approximate solutions for

u' + Au > f(t,u) on [te,to+ 0], u(te) = zo, (14)
and to compare them to corresponding e-DS-approximate solutions for

v' + Av 3 f(to,zo) on [to,to + 0], v(ty) = zo. (15)

Let € € (0,7n] with € < 0/2. Exploitation of (12) yields hy € (0,¢] and e € X with |ex| < €
such that
Tgy1 = Jp, (g + hi(f(tk, o) +er)) € Ka(tgy1) for k>0 (16)

where tg 1 := ty + hg. Given these hy we also let
Tp41 = Jhk (fk + hkf(to,.’ll‘(])) for k>0, ZToy:= zo. (17)
Since all Jp,, are nonexpansive it follows by induction that

ok — Tk < (b —to)(e+ _max_ |f(t,2;) = f(to, 20)l), }

=1l,...,k—

[Zr — xo| < (tr — to)|f(tos zo)| + [ny_, -+ - TnoTo — Zol-

(18)

Application of Proposition 1.1(d) yields

[Jhies = IhoTo — To| < 2|mo — x| + (tk — to)|yl,
hence
|z — @o| < (8 — 10)(2 + [ f(to, zo)| + |y]) + 2|20 — 2|

as long as ty — typ < r and |zx — 29| < r. By the choice of ¢ it follows that |zy — zo| < r for
all £ > 1 such that t;, <ty + o.

To obtain an e-DS-approximate solution for (14) by means of (16), we have to show that
the hy can be chosen such that t¢,, > tg + § for some m > 1. This can be achieved by the
usual trick: For ¢ € [0,a) and z € K4(t) let

we(t,z) = sup{h € (0,€¢| : p(z + hf(t,z),(I +hA)(K(t+h)ND(A))) < eh},

and choose h; > %(pe(tk,xk), say, in each step. Now suppose t; 7 too < 0. Since (17)
means Ty, = Jzkfk where J§ is the resolvent of A, with z := f(to, 7o), the estimate in

Proposition 1.1(d) shows that (Zy) is a Cauchy sequence. Hence
|Tht = Tk] < (b — 1) (€ + 1) + (tr — £5) (e + 1) + [Thys — T

for all I > 1, K > j > 0 (which follows again by induction) implies that (x) is a Cauchy

sequence too. Consequently, 2 — Zoo € Ka(too) as k — oo and therefore

lim Ve(t,x) < lim @ (tg, ) <2 lim hg = 0.
k—o0 k—o0

(t,2)—= (too —3ZToo)
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This is a contradiction, since we will show

lim  ¢(s,y) >0 forallte[0,a), z€ Ku(t). (19)
(s’y)*)(tf’m)

For this purpose, choose h > %(pe/g(t,:v) >0 and e € B,/5(0) such that
z+h(f(t,z) +e) € (I+hA)(K(+h)ND(A)).
Given t, /'t and z, € K(t,) with z, — z, let h, = h+t—t, > h. Then
Jn(x +h(f(t,x) +e)) € K(t+h)ND(A) = K(t, + h,) N D(A).
Using the resolvent identity and letting z := = + h(f(t,z) + ), we get

L=t (z — th)),

JIhz = Jp, (z +

hence

. _ht" (2= Jn2) € (I + hnA)(K (b + hn) 0 D(A)) =: R,
and therefore
p(@n + b f (tns Tn), Rn)
< ral L) = (b 2a)] (= 8) (1 )|+ |2 = T2l /B) + e
< eh < ehy
for all large n > 1, i.e. lim @e(tn,Zn) > h > 0 and consequently (19) holds.

n—oQ
Thus we get e-DS-approximate solutions u¢, v¢ for (14), (15) having the values zy, Ty on
[tk,tgy1) for £ =0,...,m, respectively, and t,, < to+0 < t;41. Since A, (with z = f(tg, z0))
is m-accretive it holds that v¢(t) — S,(t — to)zo uniformly on [tg, to + o] as € = 0+. Therefore

|Tp — S, (tk — to)xo| <on for k=0,...,m,
if € > 0 is chosen sufficiently small. Moreover, by (16) and (18),
p(Ths Ka(tr)) < (t — to) (€ + sup{| f(to, m0) — f(t,2)| : £ € [to. o + 1], @ € Ka(t) N By (20)})
for k =0, ...,m; recall that |z — z¢| < r for those k. Consequently,

p(S: (tm — to)zo, Kaltm)) < on + 2(tm — to)n
by the choice of r and e. Finally ¢t + 0 < ty41 <t + € and € < /2 imply o < 2(t,, — to),
hence (13) holds with § = ¢,,, — to. O
Theorem 4.1 combined with Lemma 4.2 obviously implies

Corollary 4.2 Let A be m-accretive in a real Banach space X, J =1[0,a] CR and K : J —
2% be such that KA(0) # 0 and gr(K.) is closed from the left. Let f : gr(Ka) — X be
locally Lipschitz continuous, satisfying (10). Then (1) has a unique mild solution for every
ug € K4(0) if, in addition, (11) or (12) is fulfilled.
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4.3 Continuous perturbations

Given again a tube K, let f : gr (K4) — X be continuous such that the necessary condition (3)
holds. We consider initial value problem (1) under additional compactness assumptions similar
to those in §3 and, since existence of approximate solutions is guaranteed by Lemma 4.1, it
is rather obvious that (1) admits a mild solution if —A generates a compact semigroup. On
the other hand, there are several applications in which (also due to the choice of K) the

perturbation f has the additional property that
f:gr(Ka) — X maps bounded sets into weakly relatively compact sets. (20)

In this situation the compactness assumption on A can be weakened somewhat: instead of a

compact semigroup it suffices that

S:LY(J;X) — C(J; X) maps weakly relatively

21
compact sets into relatively compact sets. (21)

Recall that Sw(= u(- ;w)) denotes the mild solution of (4) with ¢y = 0 where ug € K4(0) is
fixed, and notice that (21) holds if —A generates a compact semigroup due to Lemma 3.1.
Although property (21) looks rather technical, it nevertheless can be verified in concrete cases

where the semigroup lacks compactness; see §6.1 below.

Theorem 4.2 Let A be m-accretive in a real Banach space X, J =1[0,a] CR and K : J —
2% be such that K4(0) # 0 and gr(K,) is closed from the left. Let f : gr(Ka) — X be
continuous, satisfying (10) such that one of (3), (11) or (12) holds. Then (1) has a mild
solution for every ug € K4(0), if also one of the following assumptions is fulfilled.

(a) —A generates a compact semigroup.

(b) f satisfies (20) and A is such that (21) holds.

Proof. By the first step of the proof of Theorem 4.1 we may assume that f is bounded on
gr (K 4). Given €, N\, 0, application of Lemma 4.1 eventually together with Lemma 4.2 yields
wy, € LY(J;X) such that

wn(t) € f([Jten X Bre, (un(t))] Ngr(Ka)) ae. onJ

with y =1+ a and Ji(, = [t — €,.t] N J, where u, = Swy,.
If (a) holds then (u,) is relatively compact in C'(J; X) by means of Lemma 3.1 since (wy,) is

even bounded in L*°(J; X). To obtain the same conclusion in case of (b), observe that
wy(t) € f([J x BlNgr(K4)) a.e. on J,

where B := {u,(t) : t € J.n > 1} + B, (0) is bounded. Therefore (wy) is weakly relatively
compact in L'(J; X) by Lemma 3.2 and (20), hence (u,,) is relatively compact in C(J; X)
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by (21). We may therefore assume u,, — u in C(J;X). Then u(t) € K4(t) on J as well as
wyp, — f(-,u(-)) in L'(J; X) follows as in the proof of Theorem 4.1, hence u is a mild solution
of (1). O

Throughout the rest of this section we consider continuous perturbations of compact type.

Compared to §3, we shall impose the stronger condition

hlg& B(f([Jin x BlNgr(Ka)) < k(t)B(B) a.e. on J for all bounded B C X (22)

with Jyp, = [t — h,t] N J and k € L'(J). Notice that (22) is the appropriate assumption in
order to handle with the deviation in ¢ that appears in the inclusion (5). For the same reason
it is not possible to obtain directly an integral inequality for ¢(t) = S({un(t) : n > 1}), where
Uy are approximate solutions according to Lemma 4.1. To overcome the latter problem we
use the following standard result from differential inequalities. For convenience we include

the short proof.
Proposition 4.1 Let J = [0,a] C R and ¢ : J — R be measurable with ¢(0) = 0, satisfying
D7p(t) < k(t)e(t) ae. onJ, o) <@(s)+M(t—s) for0<s<t<a, (23)

with k € L*(J) and M > 0, where D~¢(t) denotes the upper left Dini-derivative.

Then (t) = 0 for every t € J.

Proof. Extend ¢ and k to [0,a + 1] by means of ¢(t) = ¢(a) and k(t ) =0 for t > a. Then
(23) still hold if J is replaced by [0,a + 1]. Given € € (0, 1], consider ¢ (t / o(t+7)dr

on J. Then ¢, is absolutely continuous with () — ¢(t) a.e. on J as € — 0+ In addition,

! . pe(t) —pe(t—h) 1 /6
p—y < - +C.
o (t) hlg& - S Ys(t+71)dT ae. on J for 6 >0

with

¥5(s) := max{0, sup pls) = s = h)} — max{0,D p(s)} asd — 0+.

0<h<é h
Since 15(-) < M by (23), the dominated convergence theorem implies
oL(t / E(t+ 1)t + 7)dr < w /06 |k(t 4+ 7) — k(t)|dT + k(t)pc(t) a.e. on ..
Application of Gronwalls’ lemma, together with ¢.(0) < Me by (23), shows that
@e(t) < Mee®h 4 M(a +1)elFh = / / |k(s+ 1) — k(s)|dsdr on J,

hence ¢¢(t) — 0 on J as € — 0+. Consequently ¢(¢) = 0 a.e. on J, hence (23) yields ¢(t) =0
for every t € J.

We are now able to obtain
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Theorem 4.3 Let A be m-accretive in a real Banach space X, J =1[0,a] CR and K : J —
2% be such that K4(0) # 0 and gr(K,) is closed from the left. Let f : gr(Ka) — X be
continuous, satisfying (10) and (22) such that one of (3), (11) or (12) holds. Then (1) has a
mild solution for every ug € K4(0), if also one of the following assumptions is fulfilled.

(a) X* is uniformly conver and —A generates an equicontinuous semigroup.

(b) A = Ay + g with D(A) := D(Ag), where Ag is linear, densely defined and m-accretive,

g : X = X 1s continuous, accretive.

Proof. Let ug € K4(0) be given. As before we may assume that f is bounded and, given
€n \¢ 0, we obtain approximate solutions u, = Sw, where (wy) is bounded in L*>°(J; X) such
that

wn(t) € f([Jen X Bye, (un(t))] Ngr(K4)) ae. on J.

Moreover, we are done if (uy,) is relatively compact in C(J; X).
Let Xy be a closed separable subspace of X such that w,(t) € X, a.e. on J and u,(t) € Xy

on J for allm > 1. We let Q = D(A) N Xo and ¢(t) = Ba({un(t) : n > 1}) on J. Then
¢ :J — Ry is measurable with ¢(0) = 0. We claim that

t

o) < o(s) + 2/ By ({tn(r) i n > 1})dr for0<s<t<a. (24)
Fix s,t € J with s < ¢ and let 7 = ¢(s). Given € > 0, there are z1,...,z,, € Q (for some
m > 1) such that {u,(s) :n >1} C U Brie(z;). Let Ny ={n >1: u,(s) € Byye(x;)}. For

i=1
fixed i € {1,...m} and n € N; let v,, denote the mild solution of

vr, + Avp D wp(T) on [s,1], vu(s) = ;.
Evidently |un (t) — vn(t)] < |un(s) —z;] < r+ € for all n € N;, hence
Ba{un(t) :n € N;}) <r+e+ Pal{vn(t) :n € N;}) <r+e+28({v,(t) : n € N;}).

If (a) holds then application of Lemma 3.7 to (v,) yields

Bo({un(t) :n € N;}) <1+ e+ 2/:5)(0({10”(7) ‘0> 1})dr,

and in case of (b) the same inequality follows by means of (22) in the proof of Theorem 3.5.

Consequently,

o(t) = lzr{l’a)’(m Ba{un(t) :n € N;}) < (s) +2 /st Bxo{wn (1) :m > 1})dr + €.

Hence (24) holds since € > 0 was arbitrary. Exploitation of (24) and (22) yields

D™ p(t) < 4k(t)e(t) a.e. on J, (25)
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which can be seen as follows. Evidently (24) implies D~ ¢(t) < 2¢(t) a.e. on J with ¢(s) =
Bx, ({wn(s) : n > p}); notice that 1) is measurable and independent of p > 1. Fix ¢t € J such
that (22) holds, let n > 0 and B = {uy(t) : n > 1} + B,(0) with » > 0. Since B is bounded
there is A > 0 such that

BUf([Jen x Bl Ngr (Ka))) < k(t)B(B) + .

Hence {wy,(t) : n > p} C f([Jin x BlNgr(K4)) for all large p > 1 implies

(1) <26({wn(t) : n 2 p}) < 2Ak(HB(B) +n] < 2[k@E)p(t) + k(E)r + 7).
The latter holds for all n,r > 0, hence ¥ (t) < 2k(t)p(t) and therefore (25) is valid.
Now recall that |w,(t)] < M a.e. on J with some M > 0. Hence (24) yields
o(t) <p(s)+2M(t—s) forall0 <s<t<a.

Consequently, the assumptions of Proposition 4.1 are fulfilled (with 2M, 4k instead of M, k)
and therefore ¢(t) = 0 on J. Hence (u,) C C(J; X) has relatively compact sections and then

equicontinuity of (uy) follows, as before, from
[un () — up(t)] < [S(|t — tun(s) —un(s)| + M(jt —s|+ |t —s|) for 0 <s<t,t<a,

where S(t) denotes the semigroup generated by —A. Thus (uy,) is relatively compact which
ends the proof. O

4.4 Carathéodory perturbations

If f is only strongly measurable with respect to ¢, the approximate solutions guaranteed
by Lemma 4.1 are not helpful due to the deviation in ¢. We are able to overcome this
problem in the important special case when the tube K (-) is replaced by a fixed closed set K.
Consequently, we consider (1) with Carathéodory f : J x K4 — X, where we assume that

|£(t,2)] < c(t)(1 4 |z]) on J x K4 with ¢ € L'(J). (26)
In this situation the following modification of Lemma 4.1 leads to approximate solutions that
are adapted to the Carathéodory case.

Lemma 4.3 Let A be m-accretive in a real Banach space X, J = [0,a] CR and K : J — 2%
with closed values be increasing with respect to inclusion and such that K4(0) # (. Let
figr(Ka) — X be bounded such that f(-,x) is continuous from the right and (3) is satisfied.
Then, given ug € KA(0) and € > 0, there is w € L'(J; X) such that

w(t) € f(t, Bye(u(t;w)) N Ka(t)) a.e. onJ (27)
with vy =1+ a.
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Proof. Since the proof parallels the one given for Lemma 4.1, it suffices to explain the
difference in the construction of the approximate solutions. Let ug € K4(0) and € € (0,1].
We consider the set M€ again, but with (27) instead of (5). The basic idea in order to obtain
(27) on a first interval [0, h], is to replace S (g.u,)(*)uo by the mild solution v(-) of

vy + Avg 3 f(t,up) on J, vo(0) = ug.

This initial value problem obviously admits a mild solution if g := f(-,ug) : J — X is strongly
measurable, and this holds if continuity from the right implies strong measurability. For the
sake of completeness we include a short proof of this fact which belongs to “folklore”. Fix
1 > 0. Then, due to continuity of g from the right, for every ¢ € J there is §(¢) > 0 such that
lg(t) —g(s)| <nforselt,t+d(t)]NJ. Since

J=U U [t+h]

teJ 0<h<4(t)
is a Vitali cover of J, application of Vitali’s covering theorem (see p.262ff in Hewitt/Stromberg

[66]) yields tx, € J and hy € (0,0(tx)] such that the [tg,t; + hj] are pairwise disjoint and

Jo = U [tk, tx + hy] satisfies A (J \ Jo) = 0. Then g, : J — X, defined by g, (t) = h(ty)
k>1
on [tg,tr + hg] and g,(t) = 0 on J \ Jo, is a step function with [g(¢) — g,(t)| < n a.e. on J.

Therefore g is strongly measurable.

Consequently, the initial value problem above has mild solution vy, and

1 1 [h
E|’Uo(h) — S1(0,u0) (M)uo] < E/o |f(t,u0) — f(O,ug)|dt — O as h — O+,

since f(-,ug) is continuous from the right. Hence there is hy € (0, €] such that

1 1
E|U0(h) — Sf(O,uO)(h)u0| < ge for all h € (0, ho].

Since zg = f(0,up) € T}?(O,uo), there is h € (0, hg] such that y; := S, (h)uy satisfies
p(y1, Ka(h)) < Seh, hence p(vg(h), Ka(h)) < eh. Choose u1 € K4(h) such that |eg| < e for
eo := (u1 —y1)/h. Let tg =0, t; =ty + h and

’U(t) = ’Ug(t) + (t — t(])e() on [t(],tl],

where we may assume |v(t) — ug| < € on [tg,t1]. By induction, the same construction yields
te Mt < a, up € Ka(tr) and mild solutions vy of

v + Avg 3 f(t,ur) on [tg, tria], vi(te) = ux
such that ey, := ugy1 — vg(tr41) satisfy |ex| < e. We then let
’U(t) = VL (t) + (t — tk)ek on [tk, tk—l—l]
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and may assume tp1 — tp < € as well as |v(t) — ux| < € on [tx,tx11]. Finally, we define
w € L'(J; X) by means of w(t) = f(t,ux) on [tg,txy1] and w(ts) = 0.
Now, the arguments given in the proof of Lemma 4.1 show that (v, w, {ty : k > 1},ts) € M€,

where (27) follows from

w(t) = f(t,u) € f(t, Be(v(t)) N Ka(tr)) C f(t, Bye(u(t;w)) N Ka(t)) on [t tgi1].

Hence M€ # (), and a repetition of step 2 of the proof of Lemma 4.1 implies the existence of

a maximal element of the type (v, w, P,a) of M¢. O

By means of Lemma 4.3 and a reduction to the almost continuous case, we are able to obtain
approximate solutions for Carathéodory f : J X K4 — X. From the preceeding sections it is
then rather clear which additional properties are sufficient for convergence of an appropriate
sequence of approximate solutions. The next result refers to situations in which we also get
uniqueness. It includes the case when f : J x K4 — X is locally Lipschitz with respect to x,
by which we mean that for every o € K there exist § > 0 and w € L'(J) such that

|lf(t,x) — f(t,7)| Sw(t)|x — 7| for a.a. t € J and all z,T € Bs(zo) N K 4.
Now we have

Theorem 4.4 Let A be m-accretive in a real Banach space X, J = [0,a] C R and K C X
closed with Ky = KND(A) # 0. Let f : Jx K4 — X be Carathéodory such that (26) and one
of (3), (11) or (12) holds. Then (1) has a unique mild solution u(-;ug) for every ug € Ka, if
also one of the following assumptions is fulfilled.

(a) f is locally Lipschitz with respect to x.

(b) X* is uniformly convex and f(t,-) is w(t)-dissipative with w € L'(J).

In addition, this mild solution depends continuously on ug € K 4.

Proof. Since it is easy to check that both (a) and (b) imply uniqueness of mild solutions, it
suffices to prove existence and continuous dependence.

1. Let us first reduce to separable X. The arguments are similar to those in the proof of
Theorem 3.2, but here we also have to care about the subtangential condition.
Given ug € Ka, let Xg = span{up}. By induction, we define an increasing sequence of
closed separable subspaces as follows. Given a separable subspace X, with uy € X, let
M, = {yr : kK > 1} be a dense subset of X,, such that K4 N M, is dense in K4 N X,,. Let
Jp C J with A (J\ J,) = 0 be such that f(J, x (K4 N M,)) is contained in a separable
subspace and f(t,-) is continuous for all ¢ € J,,. For every k > 1 choose z; € K4 such that
lye — 2| < 2p(yk, Ka), and let K, = {2 : K > 1}. Then X, 1 is defined as

Xy 41 = 5pan (X, UKy U f(Jn x (KaN X)) U J (1 +24)71X,.).
A>0
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We then let J = ﬂ Jny X = U X, and K = U(KAﬁXn); notice that K N D(A) = K.
n>0 n>0 n>0 )

The arguments given in step 1 of the proof of Theorem 3.2 show that J is measurable with

M(J\ J) =0, X is a separable subspace, f(J x K) C X and the restriction of A to X is

m-accretive in X. To complete the reduction, fix 7 € J and redefine f on (J\ J ) X K4 by

means of f(t,z) := f(r,z).

Now notice that f(t,z) € T;(‘(x) for every t € [0,a) and z € K4, regardless of the
subtangential condition that f originally satisfies. Indeed, if f satisfies (11) or (12) and
to € [0,a) is given, then application of Lemma 4.2 to g, defined by g(¢,z) := f(to,z) on
J X K4, shows that f(t,z) € T;(m) for every x € K 4.

It remains to show that the restriction of f to J x K satisfies the subtangential condition

(3) with respect to K. For this purpose, let us first show that
p(z, K) <2p(z,K,) for every x € X. (28)

Fix £ € X and let € > 0. Then there is y € M, for some n > 0 such that |z — y| < e. By
definition of K, there is z € K, C K4 with |y — 2| < 2p(y, K4). Hence z € K4 N X, 11 C K

and therefore
p(z, K) < |z — 2| < |z —y|+2p(y, Ka) < 2p(z, Ka) + 3|z — y| < 2p(z, Ka) + 3.

Hence (28) holds since € > 0 was arbitrary.
Let tg € J with £y < a, zg € K and v = f(to,zg). Due to v € T}?(mg) there is a sequence
hy, — 04 such that

h—p(Sv(hm)xo,KA) — 0 as m — oo.
m

Since 29 € K ¢ X N D(A), v € X and A (restricted to X) is m-accretive in X it follows that
Sy(hm)zo € X for all m > 1. Hence (28) implies

1 - 2
h_P(Sv(hm)$0, K) < h—P(Sv(hm)on, KA) — 0 as m — oo,
m m
i.e. f(to,.’l;‘(]) € TI?({L‘(]).
2. By the previous step we may assume that X is separable, hence f is almost continuous
by Lemma 3.4. Given € > 0, let Jo C J be closed with A;(J \ J¢) < € such that f; «x,

and c|;, are continuous. We may assume {0,a} C J, have J\ J. = U (ak, bx) with disjoint
k>1
(ag,by), and define

flto) ifte
fe(tax) = .
f(akax) ift € (akabk)'
Then fe: J x Ky — X satisfies |fe(t,z)] < ce(1 + |z|) on J x K4 with ¢ = nrf]axc(t) and

fe(+,x) is continuous from the right. In order to apply Lemma 4.3, we consider f. on a smaller
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increasing tube K(-) such that f. is bounded on gr (K 4). For this purpose let 2o € D(A)
with |ug — zo| < 1, and recall that S(-)z¢ is Lipschitz continuous of some constant L on J

since zg belongs to the generalized domain of A. Let r(-) be the solution of
' =L+c(l+r+]St)ze]) onJ, r(0)=1

and K(t) = K(t) N B,(1)(S(t)zo) on J. Evidently ug € K 4(0), and the same arguments
as given in step 1 of the proof of Theorem 4.1 show that f. satisfies fc(¢,z) € Tl‘(f‘(t,x) for
(t,z) € gr (K4) with ¢ < a. To see that K(-) is increasing, let 0 < s < ¢t < a and z € K(s).
Then

|z — S(t)xo| < |z — S(8)xo| + L(t — 8) < r(s) + L(t — s) < r(t)
shows that = € K(t).

Consequently, application of Lemma 4.3 yields an approximate solution for (1) with f,
instead of f. Given a sequence €, \, 0, the considerations above provide corresponding sets
Jp, functions f,, such that f,(¢,z) = f(t,z) on J, x K4 and approximate solutions u,, = Swy,
with w, € L'(J; X) satisfying

wy(t) € fn(t,F%n (un(t)) NK4) a.eon J. (29)
In addition, we may assume J, C J,11 as well as
|fn(t, )| < é(t)(1+|z]) on J x Ku for all n > 1 with é € L(J);

remember the construction given at the end of the proof of Theorem 3.2. By means of this
growth condition there is R > 0 such that |u,|o < R, hence |wy(t)| < 9(t) := é(t)(1 + R) a.e.
on J for all n > 1.

3. If (b) holds, we get relative compactness of (u,) as follows. Due to (29) the w,, satisfy
wp(t) = f(t,vn(t)) a.e. on J with v,(t) € K4 such that |up, — vp|eo < Ye€pn. In particular, this

implies

[n () = um(t)|* < 2 (f(s,vn(s)) = f(s,0m(s)); un(s) — um(s))ds + 2/]\J¢(S)ds on .J

[0,£]N.J,

whenever m,n > p > 1. Let n > 0 be given. Since X* is uniformly convex, |u,|o < R and

|tun, — Unloo < 7ye€, there is ng > 1 such that
[|F (un (s) — um(s)) — Fvn(s) —vm(s))|| <n for all m,n > ny.
By means of a simple computation this yields
(f(s,0n(s)) = f(s,0m(5)), un(s) = um(s))+
< 20(8) (fun(s) = um(s)]” + 4v°e5) + 2¢(s) (1 + R +y€y)n on J
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for all m,n > p if p > ng. Consequently ¢(t) = |u, (t) — un(t)|? satisfies
t
o(t) < 4/ w(s)p(s)ds + 169%[w]1€2 + 4(1 + R+ ve,)|elin + 2/\ b(s)ds on J
0 I\Jp

for m,n > p with large p, hence application of Gronwall’s lemma shows that (u,) is Cauchy
in C(J; X). Consequently u, — v in C(J; X) and u(t) € K4 on J. Moreover, w, — f(-,u(-))
in L'(J; X) and therefore v is a mild solution of (1).

4. Let us now assume that (a) holds. Then there is 6 > 0 and w € L!(J) such that
f(t,-) is Lipschitz of constant w(¢) on Bs(ug) N K4. Due to |wy(t)] < ¢(t) a.e on J we
find b > 0 such that |u,(t) — ug| < 6/2 on [0,b] for all n > 1. Exploitation of (29) yields
v+ J = K4 with |up —vp|ee < 7ye, such that wy (t) = f(¢,v,(t)) a.e. on J, hence in particular
vn(t) € Bs(up) N K4 on [0,b] for all n > ng. Fix p > ng and consider m,n > p. Then the
Lipschitz continuity of f(s,-) implies

n®) = ] < [ () — win(s)]ds
< [ () = S o)l +2 [ p(s)ds
0,10,

I\Jp
t
< /0w(s)|un(s)—um(s)|ds+27|w|1ep+2/]\Jp¢(s)ds on [0,].

Application of Gronwall’s lemma shows that (u,[o)) is Cauchy in C([0,b]; X), and the limit
is obviously a mild solution of (1) on [0,b]. Consequently, (1) has a unique noncontinuable
mild solution u. In case u is defined on [0, 7) only, exploitation of (26) shows that tEITn_ u(t)
exists and then v has an extension to [0, 7 + b] with b > 0 by the arguments from above with
J replaced by [r,a]. This contradiction shows that u is a mild solution of (1) on J.

5. It remains to show that u(- ;up) depends continuously on uy € K4, and if (b) holds
this follows immediately from the dissipativity property of f. If (a) is satisfied, let (z,) C K4
with z, — zy and u,, = u(- ;z,) for n > 0. By simple modifications of the arguments given
in step 4 it is clear that u,(t) — wo(¢) uniformly on [0,b] for some b > 0, and then either
up, — ug in C(J; X) or there is 7 € (0,a] such that wu, () — uo(¢) uniformly on [0, 7'] for all
7' € (0,7) but not on [0, 7]. If the second case occurs we obtain f (¢, un(t)) — f(t,uo(t)) a.e.
on [0,7), hence f(-,un(-)) = f(-,uo(+)) in L'([0, 7]; X) by the dominated convergence theorem
since |uplo < R for all n > 0 with some R > 0. This implies uy/jo -] — ug|jo,r in C([0, 7]; X),

a contradiction. O

Existence of a mild solution of (1) with Carathéodory f : J x K4 — X can of course also
be obtained under the usual compactness assumptions. Actually, instead of compactness of
the semigroup S(t), it suffices to assume that S(t)x, is compact, i.e. S(t)B is relatively
compact for all £ > 0 and bounded B C K 4. Depending on the set K, this may eventually
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be a much weaker assumption. Concerning perturbations of compact type, notice that the

improved inclusion (27) allows to replace (22) by
B(f(t,B)) < k(t)3(B) a.e. on J for all bounded B C K4 (30)
with k € L'(J).

Theorem 4.5 Let A be m-accretive in a real Banach space X, J = [0,a] C R and K C X

closed with K4 = K N D(A) # 0. Let f : J x K4 — X be Carathéodory such that (26) and

one of (3), (11) or (12) holds. Then (1) has a mild solution for every ug € K4, if also one

of the following assumptions is fulfilled.

(a) —A generates a semigroup S(t) such that S(t) k, is compact.

(b) X* is uniformly convex, —A genmerates an equicontinuous semigroup, f satisfies (30).

(¢) A = Ay + g with D(A) := D(Ag), where Ag is linear, densely defined and m-accretive,
g: X — X is continuous, accretive and f satisfies (30).

Proof. We follow the proof of Theorem 4.4 up to the end of step 2. We may then assume
that X is separable, and obtain approximate solutions u, = Sw, such that |u,|lo < R,
|wy (t)] < (t) a.e. on J with ¢p € L'(J) and (29) holds. It is also clear that we are done if
(uy,) is relatively compact in C(J; X).

Assume that (a) holds. Due to (29) there are v, : J — K4 such that |u,(t) — v, (t)| < ven
on J; in particular {v,(¢t) : n > 1} C K4 is bounded for all £ € J. Consequently,

un(t) = S)on(t — W <ven+ [ dls)ds for0<t-h<i<a,
implies
Bun(t) :n>1}) = B({un(t) :n>p})
< 'yep—i—/tihl/)(s)ds forallp>1and0<i—h<i<a.

Therefore (uy,) has relatively compact sections, and then equicontinuity of (u,) follows as
usual.
In the situations described in (b) or (c), application of Lemma 3.7, respectively of the

estimate (22) in the proof of Theorem 3.5, yields
Bfun(t):n 2 1) < [ Bllwals) i 2 1))ds on J
recall that X is separable. Hence (29) and (30) imply
B(fun(®) 02 1) < [ K (B{un(s) 72 1)ds + vy on J forall p 1,

which shows that (u,) has relatively compact sections. This ends the proof, since the latter

implies equicontinuity of (u,), again. O
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4.5 Upper semicontinuous perturbations
We consider the initial value problem
u € —Au+ F(t,u) on J, u(0)=ug (31)

with m-accretive A and a multivalued perturbation F' of usc type. As before we assume that F'
is defined on gr (K 4) where K : J — 2% is a given tube such that K 4(t) := K(t)ND(A) # () on
J and gr (K 4) is closed from the left. In this situation the natural version of the subtangential

condition (3) is given by
F(t,z)N T;(t,:v) # 0 for all (t,z) € gr (K4) with ¢ < a. (32)

Let us note that (32) is necessary for existence of a solution in the special case A =0 if F is

usc with compact values. We also impose the growth condition
|1F (¢, z)|] < e(1+ |z[) on gr(K4). (33)

The purpose of the present section is to explain how much can be obtained by means of the
methods and tools from §3 and the preceeding sections, where we concentrate on the case

when — A generates a compact semigroup.

Theorem 4.6 Let X be a real Banach space with uniformly convex dual, A an m-accretive
operator in X such that —A generates a compact semigroup, J =[0,a] C R and K : J — 2
be such that KA(0) # 0 and gr(Ka) is closed from the left. Let F : gr(Ka) — 2%\ () be
e-0-usc with closed conver values such that (32) and (33) are valid. Then (31) has a mild
solution for every ug € K4(0).

Proof. Let ug € K4(0) be given. By means of the arguments given in step 1 of the proof
of Theorem 4.1, there is a tube K(-) C K(-) with ug € K4(0) such that F is bounded on
gr (K 4) and (32) holds with K instead of K. We may therefore assume that F is bounded.
For every (t,z) € gr (K4) with ¢t < a choose any element f(¢,z) in F(t,z) N T;?(t,m) and let
f(a,-) = 0. Given € > 0, application of Lemma 4.1 yields an approximate solution u = Sw
such that w € L'(J; X) satisfies (5). Given €, N\, 0 this leads to a sequence (w,) C L'(.J; X)
such that

wn(t) € F([Jre, X Bre, (un(t))] Ngr(Ka)) ae. onJ (34)

with v = 1+ a, where J; ¢, = [t — €y, t] N J and u, = Swy,. Evidently (wj,) is even bounded
in L*°(J; X), hence we may assume u, — u in C(J; X) by Lemma 3.1. Then (34) implies

wn(t) € F([J1y % By(u(t))] Ngr(K4)) ae. on J for all n > n,,. (35)
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Since F is e-6-usc with weakly compact convex values it follows that {w,(¢) : n > 1} is weakly
relatively compact for almost all ¢ € J. Hence (w,) is weakly relatively compact in L'(J; X)
due to Lemma 3.2. Without loss of generality w,, — w in L'(J; X), and then (35) yields

w(t) € ConvF ([Jy,; x By(u(t))] Ngr(Ka4)) ae. on J

for all n > 0. Exploiting again the fact that F is e-0-usc this implies w(t) € F(t,u(t)) a.e. on
J, since the F(t,z) are also convex.

Now recall from the proof of Theorem 3.1(b) that w, — w in L'(J;X) and Sw, — u in
C(J; X) implies u = Sw if X* is uniformly convex. Consequently u from above is a mild
solution of (31). O

By means of Example 3.1 we know that (31) need not have a mild solution, even in a finite
dimensional Banach space in case of a compact semigroup and without constraints. On the
other hand, it is of course worth to note conditions that ensure existence of a mild solution in
general Banach spaces. Let us just mention one possible setting: The approximate solutions

Uy obtained in the proof of Theorem 4.6 are of course bounded, hence
wp(t) € F([J x BlNgr(K4)) a.e. on J with bounded B C X.

Consequently, the arguments given above also yield a mild solution of (31) if F' is as in

Theorem 4.6 and maps bounded subsets of gr (K 4) into weakly relatively compact sets, and

(wyp) C L'(J; X) with wy,(t) € F(gr (K4)) a.e. on J } (36)

and w, — w in L'(J; X) implies Sw,, — Sw.
Let us record this modification of Theorem 4.6 for later use.

Theorem 4.7 Let A be m-accretive in a real Banach space X, J =1[0,a] CR and K : J —
2% be such that KA(0) # 0 and gr(Ka) is closed from the left. Let F : gr(Ka) — 2%\ 0 be
e-d-usc with weakly compact convex values satisfying (32), (33) and such that F maps bounded

sets into weakly relatively compact sets. Given ug € K4(0), initial value problem (31) has a
mild solution if (36) holds.

Let us note in passing that (36) can be replaced by “w,, — w in L' (J; X) such that (w,(t)) C C
a.e. on J with weakly relatively compact C' implies Sw, — Sw” in Theorem 4.7, and the
latter automatically holds in the semilinear case A = Ay + g as considered for example in
Theorem 4.5(c), if —A generates a compact semigroup. This follows easily by means of
Lemma 3.1 and the variation of constants formula. Let us also mention that, in this setting,
— A generates a compact semigroup if the same holds for — Ay and g is bounded on bounded

sets.
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4.6 Remarks

Remark 4.1 Sections §4.1 - §4.3 are based on Bothe [21], while the results in §4.5 are from
Bothe [22]. Concerning the fully nonlinear setting we are only aware of Bressan/Staicu [32]
and Vrabie [111], besides the two references mentioned above. In Vrabie [111] problem (1)
has been considered for m-accretive A with compact semigroup and continuous bounded
f:Jx K — X, where K is assumed to be “semi locally closed” which includes the case
of locally closed K. In this situation a mild solution is obtained under a much stronger

“subtangential condition”. For closed K this condition essentially becomes
. -1 . _
hlg(%r sup{h™ " p(Sfz)(h)z, Ka) : (t,z) € J x Ka} =0,

and if the latter holds one immediately gets approximate solutions with constant step size.
In Bressan/Staicu [32] existence of solutions in closed sets is obtained for multivalued lsc
perturbation under the following assumptions: A is m-accretive in a real Banach space X
such that —A generates a compact semigroup, K C D(A) is closed and F : [0,a] x K — 2%\
is Isc and bounded with closed convex values such that F (¢, z) C T;(m) on [0,a) x K. The
proof exploits the fact that a bounded Isc F' admits a certain type of “directionally continuous”
selections f, and existence of a mild solution of (1) for such a right-hand side f is obtained
via approximate solutions. The construction of these approximate solutions is related to
Lemma 4.1, but relies on compactness of the semigroup.

In the semilinear case, i.e. when — A generates a Cy-semigroup of bounded linear operators
on X, the problem of existence of mild solutions on (locally) closed sets has been considered by
many authors. Before we give some more details, let us briefly explain the relation to the m-
accretive case. First of all, notice that all results of §4 remain valid for m-w-accretive A, which
follows from Remark 3.1 and the observation that y € T;(‘(t, x) implies y + wz € TI‘?‘“ (t,z) for
A, = A+ wl. Now suppose that A: D(A) C X — X is a closed, linear and densely defined
operator such that —A generates a Cy-semigroup S(¢). In this situation there is w € R and
M > 1 such that |S(t)] < Me ! on Ry, and X can be equipped with an equivalent norm || ||
to achieve M = 1. Then A is m-w-accretive in (X, || - ||), hence we are within the framework

of §4. Recall also that, in the semilinear case, v € C(J; X) is a mild solution of
'+ Au = f(t,u) on J, u(0)=ug (37)

iff u satisfies the variation of constants formula. Therefore, it is easy to see that the necessary
subtangential condition (3) is equivalent to
lim h™'p(S(h)x + hf(t,z), K(t+h)) =0 for (t,z) € gr (K) with t < a. (38)
h—0+
In Chapter VIII of Martin [78] existence of a (local) mild solution of (37) is obtained for
continuous f : J X K — X, where K C X is locally closed, in each of the following cases:
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f = g + h with continuous g, h where ¢ is Lipschitz in z and h is compact; the semigroup is
compact; the f(¢,-) are L-dissipative. In each case a separated version of the subtangential
condition is imposed; in particular f(¢,z) € Tk(z) on [0,a) x K. The first two results are
special cases of Theorem 4.5 (notice that g + h satisfies (30)), respectively of Theorem 4.2,
while the dissipative case is related to Theorem 4.1(b) but not contained therein since we
needed X* to be uniformly convex.

In Pavel [90] it has been shown that the necessary condition (38) is sufficient to get a
local mild solution of (37) for continuous f : J x K — X in case of a compact semigroup. In
Theorem 5.1.2 of [91] the same author considered multivalued perturbations in the semilinear
case, where the assumptions are: X reflexive, compact semigroup, K : J — 2% \ 0 a tube
with locally closed graph and F : gr (K) — 2%\ () locally bounded and weakly usc with closed
convex values such that (38) holds with f(¢,x) replaced by any y € F(t,x). This is essentially
contained in Theorem 4.6, since “F e-d-usc” was used to get weak relative compactness of
(wy) and can be replaced by “F weakly usc” if X is reflexive.

The result mentioned above concerning dissipative perturbations has been extended in
Iwamiya [72] to continuous f : gr (K) — X (with gr (K) closed from the left) such that (38)
and

(ft,z) — f(t,T),z —T)- <w(t, |z —Z|)|z —T| forallte Jz,T e K(t)

holds, where w is a “uniqueness function” of Carathéodory type.

Let us also mention that extensions in a different direction have been given in Martin/Light-
bourne [80], Amann [3] and Priiss [97] if —A generates an analytic semigroup: in this case it
is possible to obtain existence if, among other assumptions, f is only continuous with respect
to some fractional power of A. Furthermore, the results given in these papers allow for time-
dependent operators A(t).

Finally, concerning the special case A = 0, let us just note that existence results for or-
dinary differential equations on (locally) closed sets can be found e.g. in Deimling [39] and
Martin [78], while corresponding results for differential inclusions are given in Aubin/Cellina
[8], Aubin [7] and Deimling [42]. Differential inclusions under time-dependent constraints have
been studied in Bothe [18], [19], Frankowska/Plaskacz/Rzezuchowksi [55] and other references

given there.

Remark 4.2 For dissipative (not necessarily continuous) f : D(f) C X — X and K(t) = K
one may eventually apply invariance results for accretive operators to A — f. For example
Theorem 2 in Pierre [95] implies that problem (1) with accretive A and s-dissipative f, con-

sidered as u' + (A — f)u > 0, has a mild solution if for every z € K4 := KN D(A) and € > 0
there is h € (0,¢€], z, € D(A) N D(f) and y;, € Azj, such that

|z —zn + h(f(zn) —yn)| < he and p(zp, Ka) < he.
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In case D(f) = K this is just the weak range condition for A — f, and it becomes (12) if, in
addition, f is continuous bounded and K N D(A) = K 4.

Remark 4.3 In the situation of Theorem 4.6 or 4.7 it is not clear whether the separate

conditions
IK(t) C K(t) for A\ >0,t €[0,a), F(t,z)NTx(t,z)#0 forte[0,a),z € Ka(t)

imply (32), without further assumptions. In the special case K(t) = K with closed convex
K C X this implication is valid. Indeed, given ¢y € [0, a), zo € K4 and y € F(to, z0) Ty (z0),
there is a continuous selection f : K — X of T (-) such that f(z¢) =y by Michael’s selection
theorem, hence application of Lemma 4.2 shows that f(z) € T;(‘(:E) on K4 and therefore
Yy € T;(1 (o). In the time-dependent case K(t), the same argument works under the strong

extra assumption that T% (-, -) is Isc with convex values.
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85 Further Qualitative Results
By inspection of §3 it is obvious that the set U(ug) of all mild solutions of
u € —Au+ F(t,u) on J =10,a], u(0)=ug (1)

is a compact subset of C'(J; X) in the situations considered there. Actually, U (ug) is a compact
Rgs-set, i.e. the intersection of a decreasing sequence of compact absolute retracts, as we are

going to show now.

5.1 Structure of solution sets

The basic idea in order to prove that U(ug) is a compact Rs-set is to consider approximate
problems where F' in (1) is replaced by a decreasing sequence of appropriate F,, D F such
that U(up) is the intersection of the solution sets U, corresponding to F,,. If all F,, admit
locally Lipschitz selections then the U, turn out to be contractible, and this is sufficient for our
purpose since U(ug) is a compact R iff U(ug) is the intersection of a decreasing sequence of
compact contractible subsets of C'(J; X); see Hyman [71] for this characterization of compact
Rgs-sets. Since relative compactness of U, can only be obtained under very strong assumptions
on F', we shall also use the following slight extension of the characterization just mentioned
(see Lemma 5 in Bothe [23]).

Lemma 5.1 Let Q be a complete metric space and ) # B C Q. Then B is a compact Rs-set

iff B = ﬂ By, for a decreasing sequence of closed contractible By such that By(B,) — 0,
n>1
where [y(-) denotes the Hausdorff-measure of noncompactness in .

We concentrate on the situation described in Theorem 3.4, since it will then be clear how the

same method of proof applies in the other cases.

Theorem 5.1 Let X be a real Banach space with uniformly convex dual and A be m-accretive
in X such that —A generates an equicontinuous semigroup. Let D =conv D(A), J =1[0,a] C
R and F : J x D — 2%\ ) with closed convex values satisfy

[|F(t,z)|| < c(t)(1+|z|) on Jx D(A) with c € L*(J) (2)

and

B(F(t,B)) < k(t)B(B) a.e. on J for all bounded B C D with k € L'(J). (3)

Suppose that F(-,x) has a strongly measurable selection for every x € D and F(t,-) is weakly

usc for almost all t € J. Then U(ug) is a compact Rs-set in C(J; X) for every ug € D(A).

In particular, U(ug) is connected.
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Proof. 1. Let ug € D(A) and U = U(ug). To be able to apply Lemma 5.1, we use the
following standard approximation of F' by certain F,, D F. Let r, = 37", (W))xea be a

locally finite refinement of the open covering D :=convD(A) C U B, (z) and (¢x)rea be a
zeD
locally Lipschitz continuous partition of unity subordinate to (W))xcp. For every A € A let

z) € D be such that W) C B, (z,) and define F,, by

F.(t,z) = Z ox(z)Cx(t) on JxD with C)\(t) = conv F(t, Bay, (z))).
AEA

Then it is not difficult to show
F(t,z) C Foya(t,z) C Fy(t,z) C conv F(t,Bs,, (z) N D) on J x D for all n > 1; (4)

see Lemma 2.2 and the proof of Theorem 7.2 in Deimling [42]. Let U,, be the solution set of
(1) with F,, instead of F. By (4) it is evident that (U,) is a decreasing sequence such that
Uc ﬂ Uy. We claim that u, € U, for all n > 1 implies u,, — u € U for some subsequence

n>1
(un,) of (up). This yields U = ﬂ Uy, but it also implies Gy (U,,) — 0, where (y(-) denotes the
n>1
Hausdorff-measure in C(J; X); notice that p, := sup p(v,U) — 0 if the claim holds, hence

vEUy,
U, CU+ B, (0) yields By(Up) < pn — 0 since U is compact.

Given u, = Sw, € U, for n > 1 with w, € F,(-,u,(-)), we first get boundedness of (uy,),
since all F;, satisfy
[Fn(t, z)|| < c(t)(2+]z]) onJxD (5)

by (2) and (4). Hence (w,) is uniformly integrable and therefore (u,) is equicontinuous due
to Lemma 3.6(a). Let ¢(t) = B({un(t) : n > 1}) on J. Application of Lemma 3.7 yields

t
o(t) < [ Awa(s):n=phds onJ forallp= 1,
0
and exploitation of (3) and (4) implies

B{wn(s) : n > p}) < B(F(s,{un(s) : n > p} + B3y, (0)) < k(s)(¢(s) +3rp) a.e. on J,  (6)

hence Gronwall’s Lemma and p — oo yields ¢(t) = 0. Consequently, |u,, —ulp — 0 for some
subsequence (u,,) and some u € C(J;X). Since (6) implies S({wy(s) : n > 1}) = 0 a.e. on
J we may also assume wy,, — w by Lemma 3.2. Then w € Sel (u) follows as in step 2 of the
proof of Lemma 3.3, hence u,, — u €U.

2. We are done if the U, are contractible, since then Lemma 5.1 applies with B = I/ and
B, = U,. Fix n > 1, let g\ be a strongly measurable selection of F(-,z)) for every A € A,
and define f by

ft,z) =" oa(a)ga(t) on J x D.
AeA
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Then f(t,z) € Fo(t,z) on J x D is obvious. Since (Wy)xea is locally finite, the f(-,z) are
strongly measurable and for every zy € D there exist v > 0 and § > 0 such that

lf(t,x) — f(t,Z)| < vye(t)|lz — | forallt € J, 2, T € Bs(zo) N D (7)

with ¢(-) from (2). Therefore, given (7,2) € J x D(A), the initial value problem
v/ € —Av + f(t,v) on[r,a], v(T)=u.

has a unique mild solution v = v(-; 7, z) by Theorem 4.4 (applied with K = D) and v depends
continuously on z; notice that (5) also holds for |f(¢,z)| instead of || F,, (¢, x)||. Therefore

u(t) if t € [0, sa]
v(t; sa,u(sa)) ift € (sa,al

h(s,u)(t) = {

defines a function h : [0,1] x U, — Uy, such that h(0,u) = v(- ;0,ug) and h(1,u) = u on U,.
It remains to prove that h is continuous in order to obtain contractibility of If,,. For this
purpose let (sy,ux) € [0,1] x U, with (sg,ur) — (s,u) where we may assume that (sj) is
monotone. Let R > 0 be such that |u|p < R for all u € U,, and let zj = h(sk,ui) as well as
z = h(s,u). Consider the case s; ' s. Then

20 (t) = 2(8)| < ug — ulo + / 2(2 + R)e(r)dr on [0, sa],

in particular zj(sa) — z(sa). Hence |z, — z|o — 0, since v(- ; sa,z) depends continuously on
z. If s \( s then

Spa
|2k (t) — 2(t)| < |ug — ulo —|—/ 22+ R)e(r)dt =: o, on [0, sgal.

Let v,0 > 0 be such that (7) holds for g = u(sa). Due to zx(sa) — z(sa) there is n > 0 and
ko > 1 such that |z(¢) — zo| < 0 and |2k () — zo| < d on [sa, sa + n] for all k > ky. Hence

¢
|2k (t) — 2(t)| < ag + 'y/Ska c(7)|zk (1) — 2(1)|dT  on [sga, sa + 7]

and therefore
sa+mn

2n(t) — 2(0)] < anexp (3 [

Spa

C(T)dT) on [0, sa + n] for all k > ko.

Continuous dependence of v(- ;sa +n,z) on = implies zx(t) — z(¢) uniformly on [sa + 7, al,
hence |z — z]g — 0.
Consequently U is an Rs-set, and U is connected since all U,, have this property. O

The situation is more complicated if constraints are present. First of all, even in case K (t) = K

one cannot expect a connected solution set if K is only closed; see Example 7.3 in Deimling
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[42], where a two-dimensional initial value problem with two solutions is given. For closed
convex K the situation is better, but further difficulties occur since we now need outer ap-
proximations F, having locally Lipschitz selections f, which also satisfy the subtangential
condition with respect to K. Under the separate subtangential condition (12) such approxi-

mations are possible by means of

Lemma 5.2 Let X be a Banach space, ) # D C X closed convex and G : D — 2% \ () be e-6-
usc with closed convex values such that G(x)NTp(z) # 0 on D. Then, given € > 0, there exists
a locally Lipschitz g : D — X satisfying g.(x) € Tp(z) as well as g.(xz) € G(Be(z)ND)+B.(0)
on D.

Proof. Let € > 0 be given and recall that Tp(z) = {\My —z) : A > 0,y € D} by Proposi-
tion 2.4 since D is closed convex. Hence G(z) NTp(z) # () on D implies that for every 2 € D
there are h, > 0 and z; € X such that

2y € G(z) + B4(0) and  z + hyzy € D.
Since G is e-d-usc, we also find 7, € (0,€/4) such that
G(y) C G(z) + B.2(0) for ally € By, (7) N D.

Let (Wy)aca be a locally finite refinement of the open covering D C U B;, (z) with 6, =
zeD
min{~y,, hyyz }, and (pa)aea be a locally Lipschitz partition of unity subordinate to (Wy)xea.

For every A € A choose ) € D such that W) C Bs,, () and denote hy, , z;, and y,, by hy,

A

1
zx and 7y, respectively. Finally, let fy(z) = h—(m)\ + hyzy —x) for € D and define
A
9e(z) = > oa(z)fr(z) on D.
AEA

Evidently g, is locally Lipschitz, and g.(x) € Tp(x) on D since fy(z) € Tp(z) and Tp(z) is
convex. To obtain the other inclusion for g, fix z € D. Then

ge(z) = Z(p)\i (z)fy;(z) with A; € A such that ¢y, (z) >0fori=1,...,m,
i=1

since the sum in the definition of g, is locally finite. Now ¢y, (z) > 0 implies z, € W), hence
|z —x),| < 0y, < vz, This yields

[ai(@) =20 <Ox/ha, Sy <€/4 aswellas |zy, — oy, | <o + 90 < 27,
if we let k € {1,...,m} be such that vy, = max{y,, : 4 =1,...,m}. Consequently,
Iri(@) € Beja(zn) € Glzy;) + Beya(0) C G(Bayy (21,)) + Bej2(0) € Gz, ) + Be(0)
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and therefore g.(z) € G(x),) + Be(0) C G(Be(x)) + Be(0). O

Lemma 5.2 is Theorem 2 in Bader/Kryszewski [10] and improves a similar approximation
result (for single-valued continuous G) by the author (Lemma 1 in Bothe [25]), where it is in

addition assumed that K is proximinal. Now a basic result is

Theorem 5.2 Let X be a real Banach space with uniformly convex dual, A an m-accretive
operator in X such that —A generates a compact semigroup and () # K C X be closed convex
such that J\K C K for A\ > 0. Let J =[0,a) CR and F : J x K — 2%\ () be e-6-usc with
closed convezx values such that ||F(t,z)|| < ¢(1+ |z]) and F(t,z) N Ty (z) #0 on [0,a) x K.
Then U(ug) # 0 is a compact Rg-set in C(J; X) for every ug € K 4.

Proof. Let ug € K4, U = U(ug) and notice that U # () by Theorem 4.6 and Remark 4.3.
Cousider €, N\, 0. By Lemma 5.2, applied to G(t,z) = {0} x F(t,z) on D = J x K C R x X,
there are locally Lipschitz f, : J x K — X such that f,(t,z) € Ty (z) on [0,a) x K and

fu(t,z) € Fy(t,z) := F(Be, (t,z) N [J X K]) + B, (0) on J x K.

Let U,, denote the solution set of (1) with F,, instead of F. Evidently Fj,11(t,x) C Fy,(t,x)

on J x K, hence the U, form a decreasing sequence such that & C ﬂ U,. The growth
n>1
condition on F' implies that all U, are bounded in C(J; K 4), hence also relatively compact

due to compactness of the semigroup. Therefore Gy(U,) = 0 as well as U = ﬂ U,, and
n>1
contractibility of U, follows as before. O

Let us note that the extra condition “X* uniformly convex” can be dropped in case of single-

valued continuous F'. Additional information is given in Remark 5.1 below.

5.2 Periodic solutions and equilibria

Based on the previous results concerning (weak) positive invariance, we now provide sufficient

conditions for existence of a T-periodic solution of the evolution problem
v + Au > f(t,u) on Ry (8)

with m-accretive A and a T-periodic Carathéodory function f : Ry x K — X. Recall that

the problem under consideration is equivalent to the periodic boundary value problem
'+ Au > f(t,u) on J=[0,T], u(0)=u(T), (9)

which in turn is equivalent to the existence of a fixed point of the Poincaré operator Pr, where

Pr(ug) is the set of all values u(T') of the mild solutions of the initial value problem

'+ Au 3 f(t,u) on J, u(0) = up.
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In the sequel we will always assume that K is closed bounded convex such that
|£(t,2)] < ¢(t) on J x K with ¢ € L'(J) (10)

and S(t)K 4 is relatively compact for ¢t > 0, where S(¢) is the semigroup generated by —A and
Ky = KnND(A). Then Pr(ug) is nonempty for every uy € K4 by Theorem 4.5 if f satisfies

the subtangential condition

f(t.z) € To(x) on [0,T) x Ka. (11)

Moreover, it is easy to see that Pr : K4 — 2K4 \ 0 is a compact map with closed graph,
but further information concerning K4 and especially about the sets Pr(ug) is needed to
apply known fixed point results. In case of jointly continuous f, the latter difficulty will
be circumvented in the common way of approximating f by locally Lipschitz continuous f,
where the main point is to achieve that the subtangential condition is satisfied by f., too.

In a general Banach space additional difficulties may occur, since K4 need not have the
fixed point property for compact maps. Indeed (8) need not have a T-periodic solution as

shown by the following counter-example.

Example 5.1 Let X = R? with ||z|| = max{y/27 + 23, |23|},

D(A) ={ze€e X :\/22+22 =23} and Az ={(0,0)} x R on D(A).

Evidently R(I +XA) = X for all A > 0 and the resolvents, given by Jyz = (z1, T2, /7% + 73),
are nonexpansive. Hence A is m-accretive and —A generates the compact semigroup S(t) =
Tip(a)-

Let K = {r € X : 23 € [a,b],2? + 22 < R?} with 0 < a < b < R and define f : K — X by
f(z) = (22, —21,0). Of course f is Lipschitz continuous and bounded with f(z) € Tx(x) on
K. Moreover, f satisfies f(z) € Tk ,(z) on K4. Together with

KiyC{z e X :a®<ai+13 <} =R+ Mgnpa)),

this implies

lim hflp(m + hf(z), R(I + h.A‘KﬂD(A))) =0 on Ky,
h—0+

i.e. f satisfies the weak range condition, in particular f(z) € T;(:v) on K4 by Lemma 4.2.
Nevertheless, given any T' € (0,27) the corresponding periodic problem has no T-periodic

solution. Notice that the initial value problems
'+ Au> f(u) on Ry, u(0) =ug € Ky

have unique solutions staying in K4, which implies u3(t)? = uy(t)? + ua(t)? = U%,l + an.
Therefore every such solution satisfies u' = (ug, —u1,0), hence is periodic with minimal period
2 #T. &
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This problem cannot occur if the subtangential condition (11) is replaced by the separate
assumptions

K CK forall A >0, f(t,z) € Tk(z) on0,T) x K, (12)

since then K 4 turns out to be a retract of K. Moreover, in this situation the approximation

result Lemma 5.2 applies in case of continuous f. We therefore have

Theorem 5.3 Let A be m-accretive in a real Banach space X, K C X closed bounded convex
such that J\K C K for A > 0 and S(t)K 4 is relatively compact for t > 0, where S(t) is the
semigroup generated by —A and K4 = KN D(A). Let f: Ry x K — X be Carathéodory and
T-periodic satisfying (10) and f(t,z) € Ty (x) for almost all t >0 and all z € K.

Then the evolution problem (8) has a T-periodic mild solution.

Proof. 1. We start with the proof of Theorem 5.3 in case f is jointly continuous and bounded.
Fix e € (0,1], let J =[0,T], D = J x K and define g : D — R x X by g(t,z) = (0, f(¢,z)).
Application of Lemma 5.2 to ¢ : D — R x X, where R x X is endowed with the maximum
norm, yields a locally Lipschitz g. : D — R x X such that g = (7, f¢) where fc: J x K — X

satisfies
fe(t,z) € Tre(z) and  fe(t,z) € f(Be(t,z) N[J x K]) + Bc(0) on J x K. (13)
We claim that the approximate periodic problem
' + Au > fo(t,u) on J, u(0) =u(T) (14)
admits a mild solution. Due to Theorem 4.1, the initial value problem
' + Au D fe(t,u) on J, u(0) =wuy

has a unique mild solution ue = wue(- ;ug) for every ug € Ky, and this solution depends
continuously on uy € K4. Define P : K4y — K4 by Prug = u(T;ug). To show that Pj
has a fixed point, observe first that Py.(K4) is relatively compact. Indeed, since f is bounded
there is v > 0 such that |f¢|o < 7y (uniformly for € € (0, 1]), hence

Pp(Ka) C My := ﬂ {u(h;ug,w) : ug € Ka,w € L*([0,h]; X) with |w|ee < v}
he(0,T)

due to invariance of K 4. Evidently M, C S(h)Ka + Bj,(0) for all h € (0,T], which implies

relative compactness of M., since S(h)K 4 is relatively compact for A > 0.

Let A(z) = p(z, D(A)) on K and define R: K — X by

Ru— { J/\(m)x ODK\D A)

x on KND(A).
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Evidently Rjx, = I|k,, and JxK C KN D(A) for A > 0 yields R(K) C K4. By means of the
resolvent identity it is easy to see that R is continuous, hence R : K — K4 is a retraction.
Therefore, application of Schauder’s fixed point theorem to Py o R: K — K4 yields a fixed
point of P;, hence a solution of (14).

Consider €, \, 0. Due to the arguments given above there are mild solutions uy(-) of the
approximate problem (14) with e = €,. To obtain relative compactness of (u,) in C(J; X),
notice that {u,(t) : n > 1} C M, for all t € (0,T] if T is replaced by ¢ in the definition of M,
above. Hence {u,(t) : n > 1} is relatively compact for every ¢ € J, since u,(0) = u,(T"). This

implies equicontinuity of (u,) in the usual way, since
|un () — un (0)] < |S(Jt — t))un(s) —un(s)| +y([t —s| + |t —s|) for 0 <s<t,t<T.

We may therefore assume u, — u in C(J; X). Given n > 0, exploitation of (13) together with
continuity of f yields

e (tun(t)) C f(Be, (b, un(t)) N [J x K]) + Be, (0) C f(t,u(t)) + By(0)

for all n > n,, hence f,(t,un(t)) = f(t,u(t)) on J. Consequently f, (-, un(-)) = f(-,u(-))
in L'(J; X) and therefore u(-) is a mild solution of v’ + Au > f(t,u) on J such that u(T) =
Jim un(T) = Jim un(0) = u(0), i.e. u(-) is a mild solution of (9).

2. In the general case we repeat the reduction to separable X given in step 1 of the proof of
Theorem 4.4, and may then assume that f is almost continuous by Lemma 3.4. Consequently,
given € > 0, there exists a closed J. C J with A\i(J \ J¢) < e such that f|; .k and ¢, are
continuous, f(t,z) € Tx(z) on J. x K and {0,T} C J.. As before, we exploit the fact that
JN\ J = U (g, Br) with disjoint (g, k), and define f. : J x K — X by

E>1
f(t,z) ift e Je
fe(tax) = O —t t— o (15)
fﬁkax ift e akaﬁk‘
Br — ay Br — a (B ) ( )

Obviously fe is bounded and jointly continuous, and f. satisfies fe(t,u) € Ty (u) on J x K

f(akax) +

since the T (u) are convex. Therefore the periodic problem (14) with f. given by (15) has a
mild solution by the previous step.

To finish the proof consider €, \, 0 with Z €n < 00. For every n > 1 let f,, be given by (15)
n>1
for € = €,, let J, denote the corresponding set J., and w, be a mild solution of (14) with f,

instead of f.. Now recall that the J, can be chosen in such a way that, in addition,

|fn(t,z)| < é(t) on J x K4 for all n > 1 with ¢ € LY(J); (16)
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remember the construction given in the proof of Theorem 3.2. We may then repeat the

arguments given in step 1 with M., replaced by

ﬂ {u(h; ug,w) : ug € Ka,w € L'([0,h); X) with |w(t)] < éT — h +1t) a.e. on [0,A]},
he(0,T]

to obtain a convergent subsequence of (u,), the limit of which is a solution of (9). O

Applied to the autonomous case f : K — X, Theorem 5.3 implies the existence of a stationary

solution, i.e. we have

Corollary 5.1 Let A be m-accretive in a real Banach space X, K C X closed bounded convex
such that J\K C K for X > 0 and S(t)K 4 is relatively compact for t > 0, where S(t) is the

semigroup generated by —A and K4 = KN D(A). Let f : K — X be continuous and bounded
such that f(z) € Ty (x) on K. Then there exists © € D(A) N K such that f(z) € Az.

Proof. By Theorem 5.3 the evolution problem
u' + Au> f(u) on Ry

has a periodic solution u, of period 1/2" for every n > 1, and the arguments given in the proof
also show that (up/[o,1]) is relatively compact in C([0, 1]; X). Given a convergent subsequence
its limit u(-) = z is a mild solution of '+ Au > f(u). Evidently u is absolutely continuous and
a.e. differentiable, hence u is also a strong solution by Theorem 1.2. This implies x € D(A)

and f(z) € Az, i.e. the existence of a stationary solution. O

Let us provide some additional information concerning the case when X and X* are uniformly
convex. Of course Theorem 5.3 is applicable if the separated condition (12) holds, but here

it is tempting to work with the necessary subtangential condition (11) since the difficulty

concerning K4 disappears; notice that K4 is convex due to the fact that D(A) has this
property since X is uniformly convex. Unfortunately, it is unclear how to approximate f by
a locally Lipschitz fe, still keeping the subtangential condition (11). Here, another possibility

is to work with the explicit subtangential condition
f(t,z) — Az C T (xz) forallte€[0,T),z € KN D(A). (17)

In order to obtain existence of (T-periodic) solutions of (8) within this situation, the crucial
point is to show that (17) is sufficient for viability of K. This holds if K has nonempty
interior, and is interesting in itself: observe that (17) is in fact a condition on 0K N D(A),
only. Notice also that, depending on the contribution of A, condition (17) may lead to better
results than (12). Actually, in the situation of Lemma 5.3 below, (17) is a necessary condition

if A is single-valued; see Remark 5.3.
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Lemma 5.3 Let X be a real Banach space such that X and X* are uniformly convex. Let
A be m-accretive in X, K C X closed convex with Io{ﬁD(A) #0and f:[0,T] x K - X
continuous. Then the explicit subtangential condition (17) implies (11).

Proof. 1. Possibly after a shift we may assume 0 EIO(, hence Bs(0) C K for some § > 0.
Fix to € [0,T), let f be a continuous extension of f(to,-) to all of X, fe be locally Lipschitz
with |f— f~6| < %6(5 and define g, by g.(z) = f;(x) — 2ex on X. Then g, satisfies

ge(x) + pex — Az C Ty (z) for all z € KN D(A) and p € [0,1]. (18)

To see this, let x € K N D(A) and y € Az. By (17) there are sequences h, — 0+ and e, — 0
such that
Ty =T+ hp(f(to,z) —y+ey) € K foralln> 1.

Moreover

4 hn(ge(2) + pez —y +en) = (1 = (2 = p)ehn)z + hn(f(to, ) —y + €2 +en)
with |z] < §/2, hence

2+ hn(9e(@) + pex =y + €) = Y [(1 = €hn)zn + ehnvn] + ehin(l = 3a)vn
with
1= (2~ p)ehy
M= 1—e¢h,

Obviously |v,| < § for all large n, hence z,, € K together with Bs(0) C K and convexity of

A1 and v, =2+ hp(2 — p)(f(to,z) —y + en).

K implies (1 — €hy,)xy, + €hyv, € K for those n. Consequently,
Yn [(1 — €hy)xy + ehnvn} € K for all large n,

hence
ha ' p(x + hin(ge() + pez —y), K) < |en| + e(1 = y3)|vn] = 0
and therefore (18) holds.
2. We claim that for every ug € K4 there exists b = b(ug) > 0 such that the mild solution
u of
u' + Au 3 ge(u) on [0,b], u(0) = ug
satisfies u(t) € K on [0, b]. Once this is shown we are done, since then g, satisfies the necessary

subtangential condition g.(z) € T;(l‘) on K4, hence consideration of €, \, 0 yields
. A
fto,z) = nll)rgo e, (z) € T (x) for every z € Ky

by closedness of T[’?(x).

Let up € K4, choose r > 0 such that g is Lipschitz, say of constant L, and define h,

€| Br(uo)
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by he(x) = ge(Rz) on X, where R is the radial retraction onto B, (ug). Then h, is Lipschitz
of constant w = 2L, hence wl — h¢ is continuous and accretive. Due to Theorem 5.5 below
it follows that the operator A, given by Az = Az — he(z) on D(A,) = D(A), is such that

A, + wl is m-accretive. Therefore the initial value problem
v+ Au>0 on Ry, u(0) =g
has a mild solution w. It is easy to check that, for some b > 0, every mild solution of
v'+Aw >0 on Ry, v(0) =uvg € KN B, (up) (19)

satisfies |v(t) — ug| < r on [0,b]. We show that v(¢) € K on [0,] if vy also belongs to D(A).
Given such vy, it follows by Theorem 1.3 that the corresponding mild solution v of (19) has

a derivative v/, (¢) from the right at every ¢ > 0, v/ (-) is continuous from the right and
v(t) € D(Ae), v, (t) + Alv(t) =0 for all £ > 0;

here A%u denotes the unique element of minimal norm of A.u. Notice that the equation above
implies

(1) = — (Av(t) — (1)) on [0,0),

since |v(t) — ug| < r on [0,b].
Now suppose there is 7 € [0,b) and o > 0 such that v(7) € 0K and v(t) € K on (7,7 + o).
Then v(7 + h) = v(7) + hv! (7) + o(h) as h — 0+ together with (18) for u = 0 implies

o(7) + hy (V) (1) + €5) € 0K for all n > 1 with h, — 0+, e, — 0. (20)
On the other hand, the choice p =1 in (18) yields
v(T) 4+ hn (V' (7) + ev(T) + €,) € K for all n > 1 with é, — 0; (21)
notice that the same choice of (h,) is possible due to
Ti(z)={ye X: hlgr(r]lJr h~lp(x + hy, K) = 0} for closed convex K
by Proposition 2.4. To arrive at a contradiction, let us first show that
plx+ Az, K) > X6 forall A >0, z € K. (22)
Evidently (22) is satisfied if

{4+ XNz 4+2):2>0,]z| <d}NK =0 for all z € OK.
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Given z € 0K, Mazur’s theorem yields z* € X* with z* # 0 and z*(y) < 7y := z*(z) for all
y € K, since K is convex with nonempty interior. Of course Bs(0) C K implies |z*(z)| < v
for |z| < d, hence

'z + Az + 2)) = (L+ N)a*(z) + Az™(2) >

and therefore x + A(z + 2z) ¢ K if A > 0 and |z| < ¢, i.e. (22) holds. By means of (22) we
obtain
p(v(7) + hyp (V. (T) + ev(7) + é,), K) =

p((1 + €hy)(v(T) + hn(vﬁr(T) +en)) + hnén, K) > €hnd — hyléy|

with é, = e, — &, — hpe(v!, (7) + é,) — 0, hence the contradiction
o(T) + hy (VL (7) + ev(T) + €,) € K for all large n > 1.

Therefore, every mild solution v of (19) with vy € D(A) satisfies v(¢t) € K on [0, b].

From this fact, the claim obviously follows by approximation of ug by (up,) C K N D(A),
given that m = K 4. To see that the latter equality holds, let ug € K4 and 1 > 0 be
given. Choose u; €EKN D(A) and let up, = (1 — h)ug + huy EIO(, where h > 0 is so small that
lug — up| < n/2. Then ug, = Jyuy, satisfies ug, € K N D(A) and |ug — ugy| < nif A > 0 is
sufficiently small. O

By means of Lemma 5.3 we obtain

Theorem 5.4 Let X be a real Banach space such that X and X* are uniformly convex. Let A
be m-accretive in X such that —A generates a compact semigroup, K C X be closed bounded
convex with IO(OD(A) # (. Suppose that f: Ry x Ky — X is Carathéodory and T-periodic
such that (10) and (17) hold. Then the evolution problem (8) has a T-periodic mild solution.

Proof. The different subtangential condition requires another reduction to separable X. Fix

7 € J such that f(7,-) is continuous and bounded, consider the initial value problem
v + Au > f(r,u) on [0,1], u(0) =ug (23)

and let
Dy, = {u(1/n;up) : up € Ka,u(-;up) is a mild solution of (23)}.

Due to compactness of S(t)K4 for ¢ > 0 and boundedness of K and f(r,-) it holds that
D, C K4 is relatively compact for all n > 1. Let M, be a countable dense subset of D,

and let M = U M,,. Then M = K. Indeed, given € > 0 and ug € K 4, there exists a mild
n>1
solution u of (23) by Theorem 4.5. Evidently |u(1/n) — ug| < €/2 for some large n, hence

there is z, € M,, C M with |z, —ug| < e.
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Now choose N C J of measure zero such that all f(¢,-) are continuous for ¢t € Jy := J \ N,
and spanf(Jy x {z}) is separable for all z € M. Then

X, = m(f(Jo x M) U KA)

is a closed separable subspace of X. Since we may redefine f by f(¢,z) := 0 on N x K 4 without
changing the solution sets of the initial value problems corresponding to (8), it follows that
w.l.o.g. all f(t,-) are continuous. This implies f : J x K4 — X, hence f is almost continuous
by Lemma 3.4. It therefore suffices to consider jointly continuous and bounded f, since
reduction to this case is now possible as in step 2 of the proof of Theorem 5.3.

We may assume B4(0) C K for some § > 0. Fix € > 0, let g : J x K4 — X be locally
Lipschitz such that |f — ge|oo < %65 and define f. by fe(t,z) = ge(t,z) — ez on J X Kjy4.
Then (17) holds for f. instead of f, which follows by the arguments given behind (18), hence
fe(t,z) € T;(m) on [0,T) x K4 by Lemma 5.3. By the proof of Theorem 5.3 it is now obvious
that (14) has a mild solution u. and consideration of € — 0+ yields a T-periodic mild solution
of (8). O

In the autonomous case, existence of a stationary solution is again a direct consequence of
Theorem 5.4.

Corollary 5.2 Let X be a real Banach space such that X and X* are uniformly convez.
Let A be m-accretive in X such that —A generates a compact semigroup, K C X be closed
bounded convezr with IO(ﬂD(A) # 0 and f : Ky — X be continuous and bounded such that
f(z) € Ti(x) on Ka. Then there exists ¢ € D(A) N K such that f(x) € Ax.

5.3 Sums of accretive operators

Let A be m-accretive in a real Banach space X. In applications one often has to deal with
operators of the type A 4+ F, hence it is important to have sufficient conditions guaranteeing
that this sum is m-accretive again. Such criteria are well known in two different settings,
namely in uniformly smooth Banach spaces or for continuous F'; see Remark 5.6 below for
more details. The purpose of this section is to obtain sufficient conditions for multivalued F

of usc type. For this purpose, the following characterization of m-accretivity will be needed.

Lemma 5.4 Let A be an accretive operator in a real Banach space X. Then A is m-accretive

if and only if gr(A) is closed and

lim h™'p(z + hz, R(I + hA)) =0 for all x € D(A) and all z € X. (24)
h—0+

This is Theorem 5.2 in Kobayashi [73].
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Theorem 5.5 Let A be m-accretive in a real Banach space X and F : D(A) — 2% \ () be usc

with compact convex values such that A + F is accretive. Then A+ F' is m-accretive.

Proof. Let B = A+ F with D(B) := D(A). Then B has closed graph, since (z,,y,) € gr (B)
means y, = U, + v, with u, € Az, and v, € F(z,), hence (z,,y,) — (z,y) implies v, €
F(z) + B(0) for all n > n, and therefore v,, — v € F(z) for some subsequence (v, ) of (vy,),
hence also u,, — u:=y —v and u € Az by closedness of gr (A4).

In order to establish (24) we may assume z = 0, since for any z € X the map F,, defined
by F,(z) := F(x)—{z} on D(A), has the same properties as F'. So we are done by Lemma 5.4,
if

lim h™'p(z, R(I + hB)) =0  on D(B). (25)
h—0+

Fix x € D(B), let h > 0, C = F(z) and G(z) = F(Jy(z — hz)) for z € X where J;, =
(I +hA)~!. Evidently, G is usc with compact convex values. Hence, given € > 0, there exists
a continuous g, : C — X such that g.(z) € G(Bc(z) N C) + B,(0) on C, by Proposition 2.2.
Let G(z) = Pc(ge(z)) for z € C, where Po(-) denotes the metric projection onto C. Then
G.: C — 2°\0 is also usc with compact convex values, since P¢ has this properties. Therefore
G has a fixed point z. € C by Lemma 2.1. Given h, \,0 and €, \, 0 we repeat the previous
arguments to obtain fixed points z, of the corresponding G, i.e. we get a sequence (z,) C C
such that

Zn € Po(yn) and Yn € F(Jp, (x — hn(Be, (2n) N C))) + B, (0).
In particular, there are ey, é, € B, (0) such that
Yn —en € F(Jp, (x — hpz,))  with 2, = 2z, + é, € C. (26)

Now z,, := Jy, (x — hpzy,) satisfies |z, — z| < hy|2,| + |Jh,x — 2|, i.e. , = z as n — oo.
We may therefore assume y, — y for some y € F(z). Without loss of generality we also
have z, — z for some z € C, z, € Pc(y,) implies z € Pc(y), hence Po(y) = {y} yields
Yn — 2n, — 0. Together with (26) this means 2, € F(x,)+ ¢é, for some &, — 0. Now recall that
T — hpkn = Jh, (x — hyp2n) + hpAp, (z — hypzy,), where Aj denotes the Yosida approximation
of A. We therefore obtain

x € Tp + hp(Azy + F(xy) + €p),
i.e. (25) holds. O

From the viewpoint of applications, the assumptions on F' in Theorem 5.5 are very strong,
since the values will often be only weakly compact and convex. As a typical example consider
X = LYQ) and F(u) = {v € L'(Q) : v(z) € B(u(x)) a.e. on 2} where 3 is a maximal
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monotone graph in R. Here F' is weakly usc with weakly compact convex values if (3 is
bounded, say. In such a situation the proof of Theorem 5.5 breaks down, and we only have

the following partial result.

Proposition 5.1 Let A be m-accretive in a real Banach space X and demiclosed with compact
resolvents. Let F : D(A) — 2% \ () be weakly usc and bounded with weakly compact convex

values such that A+ F is accretive. Then A + F is m-accretive.

Proof. To obtain R(I+ A+ F) = X it suffices to solve 2+ Az + F(z) 3 0, since F = F — {y}
has the same properties as F for every y € X. Now 2 € D(A) is a solution of z+ Ax+F(x) 0
iff y+ F(z) 2 0 with 2 = Jyy, hence we let G(y) = —F(Jy1y) and look for a fixed point of
G. Since F is bounded there is a ball B = Bg(0) such that G(B) C B, and G(B) is weakly
relatively compact by Proposition 2.3 and the fact that Ji(B) is relatively compact. Let
K = tonvG(B) and consider G : K — 2K\ (. We claim that G is usc with respect to
the weak topology, i.e. G 1(C) is weakly closed whenever C' C X is weakly closed. Given
such C it suffices to show that G~1(C) is weakly sequentially closed, since G 1(C) C K
is weakly relatively compact and hence its weak closure coincides with its weak sequential
closure. Given (y,) C G~YC) with y, — ¥, let z, € G(y,) N C and z, = J1y,, where we
may assume z, — x = Jiy since (J1y,) is relatively compact and A is demiclosed. Then
Proposition 2.3 yields z,, — z € —F(z) N C, i.e. y € G }(O).

Therefore, if X is equipped with the weak topology, then K C X is compact convex and
G : K — 2K\ () is usc with closed convex values. Hence G has a fixed point by the multivalued

version of Tychonov’s theorem (see e.g. Theorem 9.B in Zeidler [116]). |

5.4 Remarks

Remark 5.1 Theorem 5.1 is taken from Bothe [23]. By inspection of the proof it is rather
obvious that the solution set U (ug) of (1) is also a compact Rs-set in the situations as described
in Theorem 3.1 and Theorem 3.5. Part (b) of the result corresponding to Theorem 3.1 is
essentially Theorem 3.3 in Tolstonogov/Umanskii [105] (where F'(t,-) is supposed to be usc),
and the fact that U(ug) is a compact Rs-set under the assumptions of Theorem 3.5 improves
Theorem 3.5 of the same paper where, in particular, the much stronger compactness condition
B(F(t,B)) =0 for ¢t € J and all bounded B C X is imposed. In the situation of Theorem 3.1,
the following simplification in the proof of the corresponding version of Theorem 5.1 is possible:
since (2) yields a priori bounds for all i, and the semigroup generated by —A is compact, all
U, are compact by Lemma 3.1, hence Lemma 5.1 is not needed then.

Theorem 5.2 remains valid if the semigroup generated by — A is only equicontinuous, given

that F' satisfies the additional compactness condition

hliI(I)l+ B(F(Jyn x B)) < k(t)3(B) with k € L'(J) for all bounded B C K,
_)
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where J; j, denotes [t — h,t + h] N J; observe that application of Lemma 3.7 together with the
latter condition yields Gy(U,) — 0+. In the special case of linear A, Theorem 5.2 as well as
the just mentioned variant thereof are contained in Bader/Kryszowski [10].

More information and additional references related to the special case A = 0 can be found in
§7 and §9.3 in Deimling [42].

Remark 5.2 In Vrabie [113] existence of a T-periodic solution of (8) is obtained in the
following situation: X is a real Banach space, A is an operator in X with D(A) convex
such that A — wl is m-accretive for some w > 0 and —A generates a compact semigroup,

f:Ry x D(A) = X is T-periodic and Carathéodory satisfying

Rli_r)r;oésupﬂf(t,mﬂ :t>0,2 € D(A)NBR(0)} < w. (27)

The following observations clearify the relation to Theorem 5.3. One may assume 0 € D(A)
and 0 € A(0) after a shift, and this does not affect (27). Extend f to a Carathéodory function

on all of Ry x X by means of f(t,) := f(t, Jyz)7) for + ¢ D(A) where A\(z) = p(z, D(A)),
and notice that (27) together with |Jyz| < |z| implies |f(¢,7)] < wRon Ry x BR(0) if R > 0 is
sufficiently large. Hence f,, := f—wl satisfies f,,(¢,z) € Ty (z) on [0,T) x K with K = Bg(0).
Since A, := A — wl is m-accretive with compact semigroup and (I + AA,) 'K C K for all
A > 0, application of Theorem 5.3 to A, f, and K = Bg(0) yields a T-periodic mild solution
u of

w4+ (A—wlhu> f(t,u) — wu on Ry.

It is easy to see that u is also a mild solution of (8), hence the result mentioned above is a

consequence of Theorem 5.3.
Remark 5.3 In the situation as described in Lemma 5.3 it is easy to see that (11) implies
0
(f(t,2) — Az) € Ty(s) forallte[0,T), = € KN D(A), (28)

hence (28) is a necessary condition for existence of mild solutions. Indeed, given ¢, € [0,7T)
and g € K N D(A), the mild solution u(-) of

u' + Au > f(thxO) on [07 1]7 U(O) = Zo

satisfies hy, 'p(u(hyn), K4) — 0 for some sequence h,, — 0+, by (11). On the other hand wu(-)

has a derivative v/ () from the right and

o (1) = (f(to,20) = Au(t))’ on [0,1).

Hence u(hy) = zo + hpu! (0) + hye, with e, — 0 implies (28).
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Remark 5.4 In the special case when X is a Hilbert space and K = Bp(0) for some R > 0,
Theorem 5.4 includes Theorem 1.1 in Cascaval/Vrabie [33], where it is also assumed that f is
jointly continuous. Section 4 of this paper contains an example in L?(Q2) with A = —A,, that
illustrates the advantage of condition (17) compared to the separated assumptions (12).

In Hirano [68] existence of T-periodic solutions for (8) is established under the assumptions
that A is a subdifferential in a Hilbert space, —A generates a compact semigroup, f : R x
X — X is T-periodic and Carathéodory with |f(¢,z)] < ¢(1 + |z|) on R x X such that
(z, f(t,2) —y) < a—blz|? for all t € R, z € D(A) and y € Az with a,b > 0. This is again a
special case of Theorem 5.4, since the latter inequality implies (17) with K = Bg(0) for all
large R > 0.

Remark 5.5 Existence of T-periodic solutions for (8) with compact f is a delicate problem.
In the semilinear case, i.e. for m-accretive, linear and densely defined A, it is known that
compactness of the semigroup S(t) can be replaced by compactness of f, under the additional
assumption that 1 belongs to the resolvent set p(S(7)). This is contained in Theorem 3 in
Priiss [96], which also includes the case of a compact semigroup; the other conditions are:
f : Ry x K — X continuous, bounded and T-periodic where K C X is closed bounded
convex with nonempty interior, and f satisfies the necessary subtangential condition. The
extra assumption “1 € p(S(T'))” cannot be dropped since Example 1 in Deimling [40] provides
a compact f : 1?2 — [? satisfying (f(x),z) < 0 for all z € [? with |z|y = 7 for a given r > 0,
such that «' = f(u) has no T-periodic solution for arbitrary T > 0.

In the semilinear setting, extensions of the above mentioned result to the case of multivalued

usc perturbations are given in Bader [9] and in Bader/Kryszewski [10].

Remark 5.6 Theorem 5.5 is Theorem 1 in Bothe [20]. Specialized to the case of single-valued
perturbations, the conditions on F become ”F : D(A) — X continuous such that A + F is
accretive”. In this situation the result is known and, using Lemma 5.4, it was first proved
in Kobayashi [73] where it is Theorem 5.3. Independently, the same result was obtained in
Pierre [94] by means of locally Lipschitz approximations of F.

The first result about continuous perturbations of m-accretive operators is Theorem 1 in
Barbu [13], where the assumptions on F' are F' : X — X continuous and accretive. In this
situation F' is in fact s-accretive, hence A+ F' is automatically accretive if A has this property.

This is not true for multivalued F', as shown by the following

Example 5.2 Let X = R? with |-|; and A : D(A) — 2¥\ 0 be given by Az = {(s,s) : s € R}
on D(A) = {0} x R. Evidently R(I + MA) = X for all A > 0. Moreover A is accretive, since
z,T € D(A), y € Az, y € AT implies y —y = (s — 3, s — 5) with 5,5 € R, hence

&~y —7) > |s — 3] + (s — 5) sgn (a2 — T2) > 0.
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Let F: X — 2%\ () be defined by

{(—1,0)} ifz; <0
Fz)=1{ [-1,1]x {0} ifz =0.
{(1,0)} ifxy >0

Observe that F' is of the same type as the operator A considered in part (a) of Example 3.1
in §3.1, hence F' is accretive. In addition, F' is obviously usc with compact convex values.
Now A+ F = {(s,t) € R?: |s — t| < 1} on D(A) which is not accretive, since e.g. = = (0, 1),
z=(0,0),y=—z,y=Tyield [zt —Z,y —y] = [z,—z] = —|z|; = —L )

If both A and B are m-accretive operators with D(A) N D(B) # (), other well-known criteria
for m-accretivity of A + B which apply if X* is uniformly convex can be found, e.g. in
Barbu [14] and Benilan/Crandall/Pazy [17]. Here, let us only mention Theorem 3 in Priiss
[98], saying that A + B is m-accretive given that A and B have this property, X and X* are
uniformly convex and D(A) Nint (D(B)) # 0.
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Chapter 3

Applications

Consider a reaction-diffusion system of the form

ou .
a—tk:Agok(uk)+gk(t,u1,...,um) in (0,00) x
enlur) _ on (0,00) x T (3.1)
ov
uk(O, ) = uo,k in
for K = 1,...,m where the components u; denote the concentration of certain chemical

species, the functions ¢, are continuous and strictly increasing with ¢4 (0) =0, g : R7" — R™
is continuous and Q C R" is open bounded with sufficiently smooth boundary T'.

System (3.1) admits an abstract formulation in X = L'(Q)™, given as
u' 4+ Au> f(t,u) on Ry, u(0)=ug (3.2)

where A corresponds to nonlinear diffusion in (3.1), and the nonlinear reacting force f :
D(f) CRy x X — X is defined by f(t,u)(z) = g(t,u(z)) for z € Q. Due to the assumptions
on o, mentioned above, the operator A is m-accretive and T-accretive in X, and the semigroup
generated by —A satisfies additional compactness properties. This follows from known facts
about nonlinear diffusion of type Ag(v) which are collected in §6.1. Hence (3.1) leads to an
evolution problem that falls into the scope of the abstract theory given in Chapter 2.

Due to the physical background additional constraints appear naturally: nonnegativity of
the solutions of (3.1) will always be a minimal requirement, and in the abstract formulation
f will usually be defined on certain subsets of Ry x X, only. Consequently, invariance and
viability results are useful for the study of problems like (3.1). This is the subject of §6.2 where
we show how the abstract theory applies to carry over some common invariance techniques
that are well-known in the semilinear setting, like invariant or contracting rectangle, to such

reaction-diffusion systems with nonlinear diffusion.
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In §6.3 we study the following more realistic model that describes a concrete process encoun-

tered in chemical engineering in the context of heterogeneous catalysis.

Oux
ot
Oy (ug)

oy Vi (ck — hi(ug)) fort>0,z€eTl (3.3)

dex
dt

k=1,....,m.

= A@k(uk)+7‘k(ta$aula"-aum) fOI't>0, z €

= —/'yk(ck—hk(uk))da—i—Rk(t,cl,...,cm) fort >0
T

Here, let us just mention some particular features of the underlying process. Certain chemical
reactions are performed inside porous catalytic pellets that are suspended in a surrounding
bulk phase, where the latter is assumed to be ideally mixed. Therefore, in addition to nonlinear
diffusion and reaction inside the pellets, macroscopic convection and reaction in the bulk phase
as well as interfacial mass transport have to be taken into account. Hence (3.3) describes a
two-phase process where u; denotes the concentration of a chemical species inside the pellets,
while ¢, represents the concentration of the same species in the bulk phase. In practice
such a process is sometimes operated with periodically varying feeds in order to increase
the performance with respect to conversion or selectivity, hence the question of existence of
periodic solutions appears naturally.

Based especially on compactness properties of the operator

—Ayp(v
A(“): o) in X = L1(Q) x R with
c /'y(c— h(v))do
r

D(A) = {(v,¢) € X : o(v) € WHL(Q), Ap(v) € LY(Q), 8(2(:)) =v(c — h(v)) on T'},

we show that (3.3) admits an abstract formulation of type (3.2) to which the abstract theory

from Chapter 2 applies. In particular, we establish existence of T-periodic and stationary
solutions under fairly realistic assumptions.

A different aspect of chemically reacting systems is studied in §7 and §8. Given a system of
chemical reactions it often occurs that some of the reactions take place at a considerably higher
rate than the remaining ones, in particular if radical or ionic reactions are involved which run
under enormous speed. Then a natural question is whether solutions to corresponding models
converge to the solution of an associated limit problem if the rate constants of all fast reactions
tend to infinity. To investigate this question we distinguish between fast reversible and fast
irreversible reactions, since different techniques are needed. In both situations an important
first step is to study the ideally mixed case with macroscopic convection which leads to initial

value problems for ordinary differential equations of type

¢=f(e)+kNR(c) on Ry, ¢(0) =co (3.4)
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with a large parameter £ > 0 corresponding to the large rate constants; here f represents
feeds plus additional slow reaction, N is the stoichiometric matrix and R = (Ry,...,Ry,,) is
the vector of rate functions.

In §7.1 we consider initial value problem (3.4) in the particular case of two fast irreversible
reactions and obtain convergence of solutions, as k tends to infinity, to the solution of a
discontinuous limit problem. If the fast irreversible reactions take place in the bulk phase of
the two-phase process mentioned above, then the limit problem is a reaction-diffusion system
of type (3.3) but with discontinuous nonlinearities Ry.

The case of fast reversible reactions is studied in §8, where we use Lyapunov functions
techniques to establish convergence of the solutions of (3.4) for a general system of independent
fast reactions.

The passage to infinite reaction speed becomes more difficult if diffusion is taken into
account, and here we only consider the case of a single reaction A + B — P, repectively

A+ B = P. If the reaction takes place inside an isolated vessel this leads to the model

problem
aa% = DyAcyg — k(cacp — kep) in Q, aa% =0 on 99
aaif = DgAcp — k(cacp — kep) in Q, aaif =0 on 00N (3.5)
aaLf = DpAcp + k(cqacp — kep) in €, aa% =0 on 0N

with D; > 0 and x > 0. In the irreversible case x = 0 we allow for nonlinear diffusion and
more general reaction kinetics in (3.5), and obtain convergence of the solutions as £ — oo to
the solution of a free boundary problem by means of nonlinear semigroup theory; this is the
subject of §7.2. The reversible case x > 0 is studied in §8.3 where we solve the corresponding

singular limit problem under the strong extra assumptions of equal diffusion coefficients.
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86 Reaction-Diffusion Systems with Nonlinear Diffusion
We consider certain classes of reaction-diffusion systems with nonlinear diffusion, say
ur = A®(u) + g(u) in (0,00) x Q, ®(u) =0 on (0,00) x 92, u(0,-) =ug in Q

in the simplest case; here u = (uy,...,up) and A®(u) = (Api(u1),--.,om(ty,)) with con-
tinuous, strictly increasing ¢i. The purpose of the present paragraph is to show how the
abstract results of Chapter 2 can be applied in order to obtain qualitative information about
the solutions of such systems.

In practice, chemical reactions are often performed inside catalytic pellets of high porosity.
Therefore we consider model problems with nonlinear diffusion of the type Ap(u) since the
latter includes the common models for diffusion in porous media as a special case; see e.g.

Vazquez [107] for more information concerning the porous medium equation.

6.1 Nonlinear diffusion of type Ap(u)

We collect several known facts concerning the abstract formulation of the scalar nonlinear

diffusion equation

dip(u)

ur = Ap(u) in (0,7) x Q, — 5

€ B(u) on (0,T) x T, u(0,-) =ug in €, (1)

where 2 C R” is open bounded with sufficiently smooth boundary I', ¢ : R — R is continuous,
strictly increasing with ¢(0) = 0 and 3 is a maximal monotone graph in R with 0 € 3(0).
Define the operator A in L!'(Q) by means of

Au = —Ap(u) for u € D(A), where

Op(u) (2)
o € B(u) on I'}.

D(A) = {u € LY(Q) : p(u) € WH(Q), Ap(u) € LI(Q), —

Here Ag(u) is to be understood in the sense of distributions. More precisely, definition (2) is

an abbreviation of the following exact formulation:
(u,w) € gr (A) iff there exists g € L*(T') such that —g(z) € B(u(z)) a.e. on T
ov

and v = p(u) is the weak solution of —Av=w inQ, — =g onT,

ov
ie. v € WhHi(Q) is such that

/(Vu,Vf)d:v:/wfder/gfda for all f € C'(9);
Q Q N

here up is understood as ¢~ (¢(u)r).
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Lemma 6.1 Let Q C R" be open bounded with C?-boundary T', ¢ : R — R continuous,
strictly increasing with ¢(0) = 0 and S a mazimal monotone graph in R with 0 € 5(0). Let
A: D(A) c LYQ) — LY(Q) be defined by (2). Then A is m-accretive and T-accretive with
D(A) = LY(Q). In addition, |(Jyu)*|, < [ut], for all X >0, p € [1,00] and u € LP(1).

This is Theorem I1.2.1 and Corollaire I1.2.2 in Benilan [15]. Use of L!(Q2) as the phase space is
natural because accretivity can be obtained only in L'(Q)-norm (see the proof of Lemma 6.4
below), and physically the L!(Q)-norm reflects conservation of mass.

To be able to apply the abstract results of Chapter 2, we need additional compactness
properties of the semigroup S(t) generated by —A. The subsequent results refer to the case
of homogeneous Dirichlet boundary conditions, i.e. ¢(u) = 0 on (0,7') x I" in (1); notice
that the latter corresponds to the choice § = {0} x R. In the situation of Lemma 6.1 (with
B = {0} x R), the semigroup need not be compact, but compactness of S(t) is guaranteed if,
in addition, ¢ is continuously differentiable on R \ {0} such that

-2
©'(r) > clr|”™! on R\ {0} with some ¢ > 0 and v > max{0, i

b
see e.g. Lemma 2.7.2 in Vrabie [112].
In the special case ¢(r) = |r|7~!r, i.e. in case of the porous medium equation, above condition
is optimal in the sense that the semigroup is not compact for 0 < v < "772 This is a
consequence of Theorem 8 in Brezis/Friedman [31]; see Remark 11 there.

On the other hand, the fact that ¢ is strictly increasing already implies compactness
properties of the semigroup that are sufficient for our purpose. To state these properties, let

Sw denote the unique mild solution of
v + Au=w(t) on J =[0,a], u(0)= up,
where ug € L1(Q) is fixed, A is given by (2) and w € L'(J; L1(Q)).
Lemma 6.2 Let Q C R" be open bounded with C?*-boundary T and ¢ : R — R continuous,
strictly increasing with ¢(0) = 0. Let A be defined by (2) with 8 = {0} x R.
(a) Then {Sw:w € W} is relatively compact in C(J; LY(Q)) if W C LY(J; LY(Q)) is weakly
relatively compact.
(b) Let ug € L>®(Q) and (wy) be bounded in L=(J; L®(QQ)). Then wy — w in L'(J; L'(Q))
implies Swy, — Sw in C(J; LY(Q)).
The first part is Théoreme 1 in Diaz/Vrabie [45], while the second one is Corollary 3.1 in
Diaz/Vrabie [46]. To obtain this result, the main point is to show that S(¢)B is relatively
compact in L' () for t > 0 and B bounded in L>(f2). Formally, this property of S(t) follows
easily by multiplication of u; = Ap(u) in (1) by ¢(u), respectively by ¢'(u)u; and integration
over (s,t) x §2. This yields

t r
(Ol + [ [Velu(r)Bar = [B(un)ls for ¢ >0 with &) = [ plp)dp.
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respectively
V()3 < [Ve(u(s)3 for 0<s <t

Therefore )
IVeo(u(t))|5 < 71®(uo)ly for t >0,

hence {S(t)ug : ug € B} is bounded in W12(Q) for all ¢ > 0, in particular relatively compact
in L'(2) by compact embedding.

This yields the first part in Lemma 6.2 as follows. It suffices to consider ug € L*°(2) and
also W C L®(J; L®(Q)), since W C L'(J x Q) is weakly relatively compact (for bounded Q)
iff

sup |w — wXyy<gylt = 0 as R — oo.
weWw

For such ug and W the sections U(t) = {(Sw)(t) : w € W} are bounded in L*°(2) and satisfy
U(t) € S(h)U(t — h) + hB(0) for 0 <t — h <t with some M > 0. Hence U(t) is relatively
compact in L' (Q) for ¢ € J and then equicontinuity of S(W) follows by the standard argument
used in §3 and §4.

In the situation of part (b) let u; = Swy, where we may assume uy — u in C(J; L1(Q))

by (a). It is known that uy is the weak solution (in the sense of distributions) of
ur = Ap(u) +wi in (0,7) x Q, ¢(u) =0 on (0,7) xI', u(0,:) =up in (3)

and that weak solutions of (3) are unique; see Brezis/Crandall [30]. By the estimates given for
|Vi(u)|2 above, we may also assume Vo (uy) — Vo(u) in L?(J; L?(£2)), hence u is the unique
weak solution of (3) with w instead of wy, and therefore v = Sw. Here the crucial point is to
have uniqueness of weak solutions of (3). The latter seems to be unknown under the general
boundary condition considered in (1), but it holds under homogeneous Neumann conditions,
given that ug € L>®(Q) and w € L'(J; L>°(Q)); see Benilan [15]. Therefore it is easy to check
that Lemma 6.2 remains valid in case of homogeneous Neumann boundary conditions.

Let us finally mention that the formal arguments indicated above can be made precise by
means of characterizations of Lyapunov functions; this will become clear in §6.3 below where

we consider a more complicated situation.

6.2 Invariance techniques

In the present section we consider a class of reaction-diffusion systems with nonlinear diffusion
and draw some consequences from the abstract theory about existence and viability of mild

solutions. In the sequel we concentrate on the specific model problem

0

S = Dgrun) + ge(tu) in (0,00) x ©

or(ug) =0 on (0,00) x T’ (k=1,...,m) (4)
ug(0,-) = ug in €,
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where () C R” is open bounded with sufficiently smooth boundary I', ¢ : R — R continuous,
strictly increasing and gx : R; x R™ — R continuous. System (4) will always be considered

as the abstract evolution problem
up, + Agu = fr(t,u) on Ry, ug(0) =upr (k=1,...,m) (5)

in L'(Q)™, where Aju;, corresponds to —Agy(uy) and the components of f are given by
fe(t,u)(z) = gg(t,u(x)). Therefore, we call v a mild solution of (4) if u is a mild solution of
the associated evolution problem (5).

By the proofs to follow it will be clear that the subsequent results are valid for other
systems of type (5), given that the Ay are m-accretive in L!(Q), say, and enjoy the same
properties as stated in Lemma 6.1 and 6.2.

In particular in the semilinear case, say problem (4) with @i (r) = dgr and dy > 0, it is well
known that invariance techniques can be useful to obtain qualitative properties of solutions
like nonnegativity, global existence and asymptotic stability, existence of periodic solutions
etc. In the simplest case, the basic idea within this approach is as follows. Suppose that C is a
closed bounded subset of R™ which is weakly positively invariant for the ordinary differential
equation

y' =g(t,y) on Ry

associated to (4), and consider K = {u € L'(Q)™ : u(z) € C a.e. on Q}. Then K is weakly
positively invariant for vy = DAwu + g(t,u) with D = diag(dy,...,dy), given that K is
positively invariant for u; = DAwu. Of course the latter condition implies severe restrictions on
the structure of the sets C'. In particular, in case of different diffusion coefficients (d; # dj, if i #
k) it turns out that C has to be a “rectangle” such that 0 € C, i.e. C = [a,b] C R™ with a; <
0 < bi. Nevertheless, there are several applications from different areas where such invariant
rectangles are available; examples can be found for instance in Chueh/Conley/Smoller [35],
Hetzer/Schmidt [65], Smoller [103], Valencia [106] and the references given there.

This approach carries over to the model problem under consideration.

Theorem 6.1 Let Q@ C R™ be open bounded with C?-boundary I' and ¢, : R — R be
continuous and strictly increasing with ¢i(0) = 0. Let C = [a,b] C R™ with 0 € C and
g: Ry xR™ = R™ be continuous such that C is weakly positively invariant for y' = g(t,y).
Then K = {u € L*(Q)™ : u(z) € C a.e. on Q} is weakly positively invariant for (4).

In particular, (4) has a global mild solution for every ug € K.

Proof. Let X = L'(Q)™ with |u| = |u1|1 + ... + [um|1- For k =1,...,m let the operator Ay
be given by (2) with ¢ instead of ¢ and # = {0} x R, and define A by means of

Au = (Aruq, ..., Apuy) on D(A) = D(Ay) X ... x D(Ap).
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Then the abstract formulation of (4) is given as the evolution problem
u' 4+ Au = f(t,u) on Ry, u(0)= ug,

where f : Ry x K — X is defined by f(¢,u)(z) = g(¢,u(z)) for z € Q. Given ty > 0 and
ug € K, we have to show that the corresponding initial value problem has a mild solution on

[to, 00), where it suffices to show that
u' + Au = f(t,u) on J =[0,a], u(0)=ug (6)

has a mild solution for every choice of a > 0. Evidently f is continuous and bounded on J x K,
and f(J x K) C X is weakly relatively compact. Lemma 6.1 implies that A is m-accretive in
X, and it follows from Lemma 6.2(a) that the solution operator S : L'(.J; X) — C(J; X) of
the quasi-autonomous problem associated with A maps weakly relatively compact sets into
relatively compact sets. Therefore Theorem 4.2 applies and yields existence of a mild solution
of (6), if

JHK CK for A>0 and  f(t,u) € Tx(u) on [0,a) x K. (7)

Let Ky = {v € L'(Q) : v(z) € [ag,by] a.e on Q} and J¥ = (I + AAy)~! for A > 0. Given v €
Kp, Lemma 6.1 yields |(J¥v)¥|s < [vF |00, hence J¥v € Kj. Consequently, the first condition
in (7) holds. To verify the second one, recall that ¢g satisfies the necessary subtangential
condition g(t,y) € To(y) on Ry x C since C is weakly positively invariant, and z € Te(y)
means hl_i)rgl+ h='p(y 4+ hz,C) = 0 since C is closed convex. Then, given u € K,

%p(u(m) + hglt,u(x)),C) — 0 as h — 0+ ace. on Q

together with the dominated convergence theorem implies f(¢,u) € T (u) on J x K; notice
that
p(v, K) = / p(v(z), C)dz for every v € X,
Q

which follows from the fact that Po(v(-)) has a measurable selection for every v € X by

Lemma 2.2, where P denotes the metric projection onto C. O

By the remarks given behind Lemma 6.2 it is obvious that Theorem 6.1 remains true if system

(4) is replaced by

0

% = App(u) + gi(t,u) in (0,00) x Q

6@27(%):0 on (0,00) x T’ (k=1,...,m) ®
14

Uk(o, ) = U,k in £2.

In this case the condition 0 € C' can be dropped which gains more flexibility for finding

invariant rectangles; notice that J/’\“Kk C K is still valid since Jf is order-preserving (due
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to T-accretivity of Ay) and Jfv = v in case v is constant in Q. Let us also mention that
9(t,y) € Tc(y) with C = [a, b] means:

y € [a,b] with yx = ay implies gx(t,y) > 0, y € [a,b] with yx = by implies gx(¢,y) < 0.

If the strict inequalities hold, i.e. if g(¢,y) belongs to the interior of Te(y) for every (t,y) €
R, x C, it is rather obvious that a solution of ' = g(¢,y) starting in C' immediately enters
smaller rectangles contained in C; in this case C is called a contracting rectangle. By means
of this observation it is sometimes possible to obtain further qualitative information, like
asymptotic stability, about the reaction-diffusion system under consideration if there is a
nested family of such contracting rectangles. This is mainly of interest in the autonomous
case g : R™ — R, since it is then possible to check if such a family of contracting rectangles
exists, merely by analysing the phase portrait of g. Several applications of this approach are
given in §14 of Smoller [103]; see also Valencia [106] and the references given there.

By the next result, this technique is also at our disposal for systems of type (8).

Theorem 6.2 Let Q C R"™ be open bounded with C?-boundary T, ¢}, : R — R be continuous,
strictly increasing with pr(0) =0 and g : R™ — R™ be locally Lipschitz. Let R(t) C R™ for
T €[0,1) be a family of contracting rectangles such that R(-) is continuous with respect to dg
and R(#) C R(7) for # > 7. Let D(1) = {u € L*(Q)™ : u(x) € R(7) a.e on Q} for 7 € [0,1].
Then, given ug € D(0), there is a unique mild solution u of (8) in D(0), and for every
T € [0,1) there is to = to(T,up) > 0 such that u(t) € D(7) on [tg,0).

If, in addition, ﬂ R(1) = {yso} with some yoo € R™, then ueo = Yoo is a stationary
T€[0,1)
solution of (8), and |uk(t) — oo koo = 0 as t = oo for every mild solution u of (8) in D(0).

Proof. Consider the abstract evolution problem (5) corresponding to (8), i.e. the components
Ajuy, refer to —Apg(ug) with homogeneous Neumann boundary condition and f : D(0) — X
is given by f(u)(xz) = g(u(z)). Since g is Lipschitz continuous on the compact set R(0) it
follows that f is Lipschitz, and g(y) € Tg((y) on R(0) implies f(u) € Tp)(u) on D(0).
Due to Lemma 6.1 the operator A is m-accretive such that Jy,D(0) C D(0) for A > 0, hence
Corollary 4.2 yields a unique mild solution u of (5) in D(0). If the initial value belongs to
D(r) for some 7 € [0,1), then the same argument with D(7) instead of D(0) yields a mild
solution of (5) in D(7). Consequently, if the mild solution v in D(0) satisfies u(ty) € D(r) for
some ty > 0 then u(t) € D(7) on [tg, 00).

Let o(t) = sup{r € [0,1) : u(t) € D(7)} for t > 0. Then o : Ry — [0,1] is increasing
due to the considerations above, hence 0, = tllglo o(t) exists and the first assertion obviously
holds if 0o, = 1. Suppose that 05, < 1 and let R = R(04). Since R = [a, b] is a contracting

rectangle, g is continuous and R is compact, there is n > 0 such that
9k (y) > 2n for y € [a,b] with yp = ay, gr(y) < —2n for y € [a,b] with y; = by.
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Hence there also is € > 0 such that

gk(y) = fory € [a —ee, b+ ee] with |y; — ag| <e,
gr(y) < —n for y € [a — ee, b+ ee] with |y, — bi| <€,

where e = (1,...,1) € R™. We may also assume 2¢ < by — ay for all k; notice that any
contracting rectangle necessarily has nonempty interior. Let J = [0, a] with a = 2¢/7, define
the tube C : J — 28" \ () by C(t) = [a — ee + tne,b + ee — tne] and let

K(t)={ue L'(Q)™ : u(z) € C(t) a.e. on Q} on J.

Evidently y € C(t) for ¢t € [0,a) implies y + hg(y) € C(t + h) for all small h > 0, hence f
satisfies f(u) € Ty (t,u) for t € [0,a) and u € K(t). Consequently, K(-) is positively invariant
for u' + Au = f(u) by Lemma 4.2 and Corollary 4.1.

Since R(-) is continuous with R(0x) + [—€e, ee] = C(0), there is 01 < 0o such that R(o1) C
C(0). Let tg > 0 be such that o(tg) > o1. Then u(ty) € D(o1) C K(0) implies u(tp + a) €
K (a). Hence u(ty + a) € D(o2) for some 09 € (0c0,1) with C(a) = [a + ee,b — ee] C R(09)
yields the contradiction o(tg + a) > 0ue.

Now suppose that ﬂ R(7) = {yoo} with some Yoo € R™, let us () = Yoo on 2 and u(-)
T€[0,1)
be the unique mild solution of (5) with ug = us, in D(0). Since ug € D(7) implies u(t) € D(1)

on R, we obtain u(t) € ﬂ D(7) = {ux} on R, hence u(t) = u is a stationary solution
T€[0,1)
of (8).

Finally, let u be a mild solution of (8) in D(0) and € > 0. Due to the properties of R(-)
there exists 7. € [0,1) such that R(7.) C B(ys), hence the first part of this proof yields
te > 0 such that u(t) € D(7¢) on [te, 00). Therefore |uy(t) — oo k|00 < € for t > 2. O

Let us illustrate the invariance technique by means of a simple example from population
dynamics. Consider two competing species sharing the same habitat Q C R?, and let u,v
denote their population densities. If migration across I' = 92 is not possible, a model for the

time evolution is given by the system
up = Ap(u) + uhi(u, v) in (0,00) x Q
vy = AP(v) + vha(u,v) in (0,00) x

dp(u)  dp(v) (9)
5 = By =0 on (0,00) x I'

u(0,-) = ug, v(0,:) =vy in Q,

where we assume that €2, I' and ¢, 1) satisfy the corresponding assumptions of Theorem 6.1.
Let us note that nonlinear diffusion of type Ap(u) with differentiable ¢ such that ¢'(0) = 0
and ¢'(r) > 0 otherwise has been proposed in Gurtin/MacCamy [63] for population models in

102



order to take account of an increase in migration due to population pressure (see also §9.3 in
Murray [87]). Typical assumptions on h are h : ]Ri — R? locally Lipschitz such that hq (y1, ),

ha(-,y2) are decreasing (competition) and

hi(y1,0) > 01in [0,71), hi(y1,0) <0 in (r1,00),
h2(05y2) >0 in [OaTQ)a h2(07y2) <0in (7‘21 OO)

with r1,79 > 0 (logistic growth of each species in absence of the other one). The assumptions
given so far imply that [0,0] C R? is a contracting rectangle for the ordinary differential
equation

Yy =gy) with g(y) = (y1l(y), y2ha(y)) (10)

whenever b; > r;. Hence the population model (9) admits a global mild solution for every
initial value (ug,vo) € L>®(€;R%) by Theorem 6.1, and Theorem 6.2 yields

lim [u(t)loo < 71, Tim [v(t)]ec < 72
t—o0 t—o0
Now suppose that h is such that (10) has a unique equilibrium j €R? (coexistence) which is

o
globally asymptotically stable in ]R?H let us mention that in the special case

hi(y) = a1 — Biyi — M1y, ha(y) = as — Paya — yay1  with oy, B3,y > 0,

such a globally asymptotically stable equilibrium exists if

aq a2\ a2 Oy

(I _ E) (% — E) >0 and p10s > y179-

Under this assumption, the stationary solution (u,7) = 7 of (9) attracts all mild solutions
starting in
M = {(ug,vp) € L®(%RE) essﬂinfuo > O,GSSQinfU(] > 0}.

To see this, let y(-;y9) denote the unique solution of (10) with initial value yo € ]Rﬁ_. Here it
is helpful to observe that g is quasimonotone with respect to the cone C' = Ry x R_ due to
the monotonicity properties of hy, he, hence yg <¢ z¢ implies y(; yo) <¢ y(t; z0) on R4 where
<¢ denotes the partial ordering induced by C. Now, given (ug,v¢) € M, choose yq, zo 6][03»?F
such that yy <¢ ¥ <¢ 29 and

Yo,1 < eSSQinfuo, 90,2 > |Voloos 20,1 2 |toloes 202 < eSSQinfvo-

Let y(t) = y(t;y0) and z(t) = y(t;20). Then y(t) <¢ ¥ <¢ 2(t) on R4, y(t) — 7 as well
as z(t) - gyast — oo, and R(t) = {n € R% : y(t) <¢ n <¢ z(t)} defines a positively
invariant tube for (10). Evidently the R(t¢) are rectangles. Here, instead of showing that
the R(t) are also contracting, it is easier to apply directly Corollary 4.2 to conclude that
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(u(t),v(t)) € K(t) for t > 0 with K(¢) = {(u,v) € L'(Q;R?) : (u(x),v(z) € R(t) a.e. on Q}.
Hence (u(t),v(t)) — (@,7) in L>®(Q)2.

This example shows how a direct comparison between solutions of reaction-diffusion systems
like (4) or (8) and of the associated ordinary differential equation y' = g¢(¢,y) is possible if
g is quasimonotone with respect to a cone that induces rectangular order intervals. This
well-known fact may for instance be used to formulate sufficient conditions for existence of

global solutions. A typical result in this direction is

Proposition 6.1 Let Q C R™ be open bounded with C?-boundary T, ¢, : R — R be continu-
ous, strictly increasing with ¢(0) = 0 and g : Ry xR — R™ be continuous with gi(t,y) >0
if yp = 0. Define g: Ry x R — R™ by

9r(t,y) = max{gy(t, 2) : zx = yx,0 < z; <y; for i # k}.

Given ug € L*(; R, let yo = (luoa

00y« -1 |U0,mloc) and G(-) be a (local) solution of

y' =7g(t,y) on Ry, y(0)=yo. (11)

Suppose that § has a mazimal extension onto [0,T) for some T € (0,00]. Then the reaction-

diffusion systems (4) and (8) with initial value ug admit mild solutions on [0,T).

Proof. Evidently g is continuous with g, (¢,y) > 0 if y = 0, hence (11) has a local solution g(+)
which admits a maximal extension onto [0,7) for some T' € (0, 00]. Let C(t) = [0,7(t)] C R,

K(t) = {u € LY)™ : u(z) € C(t) a.e. on Q} on [0,7T)

and notice that gr (K) is closed from the left. Define f : gr (K) — L'(Q)™ by f(t,u)(z) =
g(t,u(z)) for z € Q. Inspection of the proof of Theorem 6.1 shows that the abstract initial
value problem (6) corresponding to (4) or (8) admits a mild solution on every interval [0, a] C
[0,T), given that f(t,u) € T (t,u) on gr (K). Furthermore, the latter holds if

Jim h= p(y + hg(t,y),C(t +h)) =0 forallt € [0,T),y € C(t).
—

Let t € [0,T) and y € C(t). Then y, = 0 implies yi + hgi(t,y) > 0, while y; = 7, (t) yields

9k(t,y) < G (,79(t)) = 73, (1) by definition of g, hence yx + hgk(t,y) < 7y (t + h) + o(h). Con-

sequently, hlir(r)l+ R p(yx + hgr(t, ), [0,7,(t)]) = 0 which ends the proof. O
_)

Observe that g = g holds in the situation of Proposition 6.1 iff g is quasimonotone with re-

spect to R'?, i.e. iff all components g;(t,-) are increasing in y; for every i # k.

There are other applications which lead to reaction-diffusion systems with discontinuous re-

action terms. Such situations occur for instance if certain limiting cases are considered, where
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the discontinuous ”"law” g appears as an approximation of a more complicated, maybe con-
tinuous or locally Lipschitz model. To explain this in more detail, consider the specific case
of a single irreversible exothermic reaction, taking place inside a bounded region © C R3.
Under several simplifying assumptions this leads to the following mathematical model; see
Chapter 2.5 in Aris [4].

-1
uy = Au — p?h(u) exp ('yv ” ) in (0,7) x 2

-1
Mg = Av + op’h(u) exp ('yv 5 ) in (0,7) x Q
u=v=1 on (0,7) x I’
u(0, ) = ug, v(0,-) = vy in Q.

Here u and v denote the concentration of the reactand, respectively the temperature in di-
mensionless form, and the boundary condition refers to the case when both are constant in the
surrounding bulk phase. Concerning the constants appearing in this model, let us only note
that u is the Thiele number, ¢ > 0 the Prater temperature, v > 0 the Arrhenius number and
A~!1 > 0 is the Lewis number. The reaction rate h is of course only meaningful for nonnegative
concentrations and a typical choice is h(r) = r® with a > 0 in case of "reactions of order o”;
see, e.g. Chapter 2 in Espenson [50]. In the limiting case a = 0 of zero-order reactions this
leads to the Heaviside function, i.e. h(0) = 0 and h(r) =1 for r > 0.

In practice, chemical reactions are often performed inside porous catalytic pellets, hence
nonlinear diffusion inside {2 has to be taken into account for a more realistic model. This
leads to a reaction-diffusion system of type (4) but with a discontinuous reaction term g :
R’ — R™, and the example above shows that, in general, we cannot expect g to satisfy any
condition of dissipative type.

Other examples with discontinuous nonlinearities arise, for instance, in porous medium
combustion in the limiting case of large activation energy (see Norbury/Stuart [88], [89] and
Stuart [104] as well as Remark 6.3), in climate modelling where the discontinuity is due to a
jump of the planetary coalbedo as a function of the temperature (see Diaz [44]), and in the
instantaneous limiting case of irreversible concurring reactions (see §7 below).

It has been mentioned before that ordinary differential equations, say y' = g(y) with
g : R™ — R™, need not admit (local) solutions in case of discontinuous right-hand sides. On
the other hand, if ¢ is obtained as the approximation of a continuous function A and if the
graph of h is, in a certain sense, sufficiently close to the graph of g, then a given solution of
y' = h(y) with initial value y(0) = yo will be close to some solution of ¥’ € G(y), y(0) = yo,

where the multivalued ”regularization” G is given by

G(y) = ) conv g(Bs(y)).
6>0

The following example from Applied Mechanics illustrates this passage to a modified right-

105



hand side. Suppose that an oscillating mass is subjected to dry friction forces due to its

contact to a wall, say. This leads for instance to differential equations of the type

y" +h(y') + ply)sgny' + fy) = o(t)

where h, f and ¢ correspond to viscous damping, restoring and external forces, respectively.
Furthermore —u(y)sgny’ is a “law” to describe dry friction forces, called Coulomb’s law in
case of constant p. Here an interesting phenomenon due to the presence of dry friction is
the occurence of so-called stick-slip-motions, i.e. solutions may have deadzones (“stick”), say
y(t) = c on some interval [0, 7]. This means h(0) + u(c)sgn (0) + f(c) = ¢(t) on [0, 7], hence
one cannot defined sgn (0) as a fixed value but has to allow the whole interval [—1, 1]. Hence

the problem has to be modeled by the differential inclusion

y" +h(y') + p(y) Sgny’ + f(y) 2 ¢(t)

instead, which corresponds to the passage from a discontinuous g to its usc regularization G
mentioned above. For more details and mathematical results concerning differential inclusions
of this particular type see Bothe [24], Deimling/Hetzer/Shen [43] and the references given in
these papers; concerning the whole subject of discontinuous differential equations see §A.1 in
Deimling [42] and Filippov [54].

It is therefore reasonable to replace g in (4) by G, where Bjs(y) has to be replaced by
Bs(y) N R in the definition of G above in case g is only defined on R’!. Under the mild
assumption that g is locally bounded it follows that G : R — 2R™ \ () is usc with compact
convex values and G(y) = {g(y)} if g is continuous at y; remember §2.1. Consequently, we

are led to consider
ur € A®(u) + G(u) in (0,00) x 2, ®(u) =0 on (0,00) xI', u(0,:) =up in £, (12)

where u = (uq1,...,up) and A®(u) = (Ap1(u1), ..., Apm(uy)). Let us note in passing that
a componentwise notation would be misleading here, since z; € Gi(y) for K =1,...,m is not
the same as z € G(y) unless G(y) is a rectangle.

Problem (12) will be considered in its abstract formulation as the nonlinear evolution problem
u' € —Au+ F(u) on Ry, u(0) =ug (13)

with multivalued F' of usc type. Therefore, let us first clarify how much regularity can be

expected for F', given that G is usc.

Proposition 6.2 Let G : R — 2R™\ O be usc with compact convex values, Q@ C R™ be
measurable and bounded and let p € [1,00). Then F : LP(Q; RT) — 2LPE™  defined by

F(u) ={v e LP(Q)" : v(z) € G(u(z)) a.e. on Q},

has nonempty, weakly compact and convex values for all v € L*®(;R?). Moreover, F is
e-0-usc on every | - |oo-bounded subset of LP(£2;RT").
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Proof. Let u € L®(Q;R7). Then G(u(+)) : © — 28"\ is measurable, since G(u(-))"}(4) =
{x € Q:u(z) € G (A)} is a measurable subset of  for every closed A C R™. Having also
closed values, G(u(-)) admits a measurable selection v by Lemma 2.2, and v € L*(Q)™ C
LP(Q)™ since G is bounded on bounded sets. Consequently F'(u) # (), and the other properties
of the values F(u) are obvious.

Let (uy) C LP(Q;RT) with M := ?91;11)|uk|oo < oo such that ug — w in LP(Q)™. Given

€ > 0, we then have to show that
F(ug) C F(u) + B:(0) for all k > k.

We may assume uyp — u a.e. on §). By the theorems of Lusin (together with its multivalued
version) and Egorov, given o > 0, there exists a closed Q, C Q with A\, (Q2\ Q,) < o such that

G(u())|Q ; U], as well as all uy|,, are continuous and sup lug(z) —u(z)] = 0 as k — oo.

We claim that, given also n > 0, there is kg = kq(n,0) > 1 such that
G(ug(z)) C G(u(z)) + By(0) on Q, for all k£ > k. (14)

Suppose not. Then there is (z;) C Q, such that G(ug,(7;)) Z G(u(z;)) + By(0) for all j > 1,
where k; * oo. Without loss of generality we have z; — zo € €5, hence uy; (z;) — u(zo)
implies G (u; (z;)) C G(u(zo)) + Byy/2(0) for all sufficiently large j. Therefore, by continuity
of G(u(:))|q, , we get the contradiction G (ug; (z;)) C G(u(z;)) + By (0) for all large j.

Since G(By(0) NRT) C Br(0) for some R > 0 and

pvg, F(u)’ = / p(vr(z ()P dz for vy, € F(uy),

exploitation of (14) yields

1/p 1/p

p(ok F () < (P 2n(Q) + CRPA(Q\ 2)) " < (172n(Q) + 2R)0)

for any vy € F(ug) with & > kg. Hence the second assertion follows by choosing o, > 0 such
that 7P, () + (2R)Po < €P. O

While it is rather obvious that F' is weakly usc on | - |oo-bounded subsets in the situation of

Proposition 6.2, such F' need not be usc. This is shown by the following counter-example.
Example 6.1 Let Q = (—1,1), G : R — 2R\ § with
G(0) =[-1,1] and G(r) ={r +sgn(r)} for r #0,

and define F : L'(Q) — 2L/ @\ ( by F( ) = {v € LY(Q) : v(z) € G(u(x)) a.e. on Q}.
Let v, = (1 + 1/n)r,, where r,(x) = sgn(si

= {v, : m > 1} is a closed subset of ( ), since v, — 0 and no subsequence (v, ) satisfies
vnk( ) = 0 a.e. on Q. Evidently F~*(A) = {1r, : n > 1} is not closed, hence F is not usc
on | - |so-bounded subsets of L'(). <&

n(2"x)) are the Rademacher functions. Then
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By means of Proposition 6.2 we are able to prove

Theorem 6.3 Let Q C R" be open bounded with C?-boundary T, ¢}, : R — R be continuous,
strictly increasing with ¢ (0) =0 and G : R — 2R™\ () be usc with compact convez values.
Let T € (0,00], 5 : [0,T) = R be continuously differentiable and C(t) = [0,%(t)] on [0,T).
Suppose that G(y)NTc(t,y) # 0 on gr(C). Then, given ug € L (Q;RT) with |ug kleo < Ti(0)
for k=1,...,m, problem (12) has a mild solution u on [0,T) such that 0 < ug(t,z) < 7,(t)
a.e. on Q) for allt € [0,T) and k=1,...,m.

In particular, if G(y) N Try(y) # 0 on RY then (12) has a local nonnegative mild solution
for every ug € L*(Q; R').

Proof. 1. We consider (12) in its abstract formulation as the initial value problem (13) in
X = LY()™ where Au corresponds to (—Ae1(u1), ..., —A@m(uny)) with Dirichlet boundary
conditions; cf. the proof of Theorem 6.1. Let

K(t)={ue X :u(x) € C(t) a.e. on Q} on [0,T),
and define F : gr (K) — 2% \ () by means of
F(u) ={v e X :v(z) € G(u(z)) a.e. on N}.

We are going to apply Theorem 4.7, and it suffices to show that (13) has a mild solution on
J = [0, a] with arbitrary a € (0,7). The following assumptions of Theorem 4.7 are obviously
satisfied: gr (K) is closed from the left, F' is bounded on gr (K|;) and maps bounded sets
into weakly relatively compact sets; in fact F' maps gr(K|;) into an L*°-bounded subset
of X. Moreover F is e-d-usc with weakly compact convex values by Proposition 6.2, and
condition (36) in front of Theorem 4.7 is satisfied (for up € L*°(2)™) due to Lemma 6.2(b).
Hence (13) has a mild solution u on J with u(-) € K(-) by Theorem 4.7 and Remark 4.3 if
F(u) NTx(t,u) # 0 on gr (K) and Ty(-,-) is Isc with closed convex values.

To check these remaining conditions, notice first that
To(t,y) ={z€ R™ : 2, > 0if yp =0, 2z, <7 (¢) if yp =7, (¢)} on gr(C),

and

1
lim —p(y+hz,C(t+h)) =0 if z € Tc(t,y) with (t,y) € gr (C) (15)
h—0+ h

since 7' is continuous. The latter also implies that T (+,-) is lsc, and Te(t,y) is obviously
closed convex. Fix ¢t € [0,T"), u € K(t) and observe that G(u(-)) N Tc(t,u(-)) is measurable
with nonempty values. The latter holds since both G(u(-)) and T¢ (¢, u(-)) are measurable;

for instance

Te(t,u(-) ™ (V) = {z € Q:u(z) € Te(t,) " (V)},
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and Tc(t,-)~1(V) is open for all open sets V since Tc(t,-) is lsc. Hence application of
Lemma 2.2 yields a measurable selection v of G(u(-)) N To(t,u(-)). Due to

%p(u—i—hv,K(t—i—h)) :/Q%p(u(w) + hv(z),C(t + h))dz,

we obtain v € Ty (t,u) by means of (15) and the dominated convergence theorem. Hence
F(u) NTx(t,u) # 0 since v € F(u). In fact the same argument yields

Ty(t,u) ={ve X :v(x) € Te(t,u(zr)) a.e. on Q} on gr(K),

which immediately shows that the T (¢,u) are closed convex. It remains to prove lower
semicontinuity of T (-,-) which follows if p(v, T (-,-)) is usc for all v € X. For this purpose
let () C [0,T) with t;, — t € [0,T), u* € K(t;) with u*¥ — u and v € X, where we may

assume u*(z) — u(z) a.e. on . Then

Tim p(v, T (t.u*)) = Tm | p(v(), Te(ty, u* (2)))de

k—00 k—o0 /2

< [ Tim p(o(@), Te (b, u* (2))de < /Qp(v(w),Tc(t,U(fc)))dw = p(v, Ty (t, w));

Q k—oo

for the first inequality notice that p(v(z), Tc (ty, u*(x))) < |v(z)| + M a.e. on Q where M =
sup |7 (tx)|, since To(t,y) contains an element z with |z| < [¢/(¢)| for every (¢,y) € gr (C).
k

Hence T (-, ) is Isc, which ends the proof of the first assertion.

2. Given ug € L*®(;RT), let yo = (Juo,1]00s - - - 5 [40,m|o0)- Since the usc G is bounded on
bounded sets, there is M > 0 such that ||G(y)|| < M on [0,y¢ + €] withe = (1,...,1) € R™.
Let y(t) = yo+tMe and C(t) = [0,%(¢)] on [0,a] with a = 1/M. Given ¢ € [0,a) and y € C(t)
there is z € G(y) N Trr (y), and |z| < M. This implies y + hz € C(t + h) for all small h > 0,
hence z € T¢(t,y). Therefore (12) has a nonnegative mild solution on [0,a) by step 1 of this
proof. O

6.3 A problem from heterogeneous catalysis

The subsequent model problem plays a fundamental role in chemical engineering within the
context of heterogeneous catalytic reactors. The underlying situation is that a chemical
reaction, say A+ B — P in the simplest case, is to be performed which only takes place (with
economic speed) if being catalysed. In the majority of industrial applications the catalytic
substance forms a separate phase and the catalyst frequently comes in the form of porous
pellets. In this case the process is said to be heterogeneously catalysed, since the overall
system consists of at least two different phases. The actual number of different phases depends
of course on the specific type of process under consideration. In the sequel we consider a model

that refers, for instance, to so-called stirred slurry reactors, the type probably encountered
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most frequently in industrial practice. In this reactor design solid particles of small size (the
porous catalytic pellets) are suspended in a liquid bulk phase either mechanically, or by means
of gas bubbling. As a result, the reactor is almost perfectly mixed with respect to the liquid
and can be operated isothermally. The appearance of an additional gas phase is typical, since
the reactants are often fed into the reactor in different phases. Still it suffices to consider
a two-phase liquid/solid system, given that transition of the species from gas to liquid is
comparatively fast, a reasonable assumption in many concrete applications.

In order that reaction takes place, A and B have to diffuse into the interior of the catalyst
to reach the active sites at the inner surface of the porous pellets. For a realistic model of the
overall process one has to take into account macroscopic convection, interfacial mass transfer
as well as diffusion, adsorption and reaction within the pellets. In mathematical terms the
following system of coupled nonlinear reaction-diffusion equations with dynamical boundary

conditions results.

Jdc . 0 c
A Apa(ca) —r(ca,cp) in Q, 7('0’4( 4) = ’}/A(Cg‘ —ha(cq)) onT
ot ov
Jdc . 0 c
a—tB = App(cp) —r(ca,cp) in % =5(cp — hp(cp)) onT
y (16)
CA = peh(®) )~ [ aldh ~ hatea))do
r
dc%

dt plef () = ) — /FWB(C'}_; — hp(cp))do

Here we assume that all pellets are of the same shape given by a certain set @ C R? with
C?-boundary I', and v denotes the outer normal. To take care of the pellets’ high porosity,
diffusion within the pellets is modelled by Ay 4(c4) and Apg(cp), respectively, with continu-
ous strictly increasing functions ¢4 and ¢p. Evolution of the bulk concentrations is described
by the latter set of equations, where the positive constant p denotes the ratio VLf / V1 between
the liquid flow rate VLf and the liquid volume V, and the feeds cﬁ, cé are time-dependent
nonnegative functions. The integral terms reflect mass transport into the pellets; actually the
integrals would appear with the factor N/Vy, in front, where N is the total number of pellets,
but this can be omitted after rescaling the bulk concentrations. Interfacial mass transport is
typically modelled by so-called film-diffusion, where it is assumed that a stagnant boundary
layer is present around the pellets, separating the pellets from the region of turbulent liquid.
At the outer surface of this film the concentration of a specific species equals the corresponding
bulk concentration, while at the inner surface continuity of mass-flow (i.e. 9,¢;(¢;) = D;0,c;)
as well as thermodynamic equilibrium is assumed. The latter typically leads to a jump of the
concentrations at the surface of the pellets, which enters the model in terms of increasing

functions h4, hp. The particular boundary condition used in (16) follows from additional
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simplifying assumptions which are reasonable if the boundary layer is sufficiently thin. In this
case we may assume stationary diffusion within the film, hence if ¢; denotes the concentration
of species j in the film then d,¢;(x) is approximately given by fy(cg —¢j(z)), where 1/ is
the thickness of the film. This approximation becomes exact in the radial symmetric case,
where 7 is a different constant which also depends on the diameter of the pellets. Without
these simplifications an additional set of equations for the film-diffusion appears and leads to
a slightly more complicated model, but which still can be handled by the same methods.

Finally some explanations concerning the reaction term are in order. Intrinsic to the model
is the basic assumption that the catalytic sites are distributed uniformly over the whole pellet;
in fact the inner surface is identified with €2. This is reasonable since any efficient catalyst
necessarily has to be endowed with an extremely large active surface. There are two possible
mechanisms for a catalysed reaction A+B — P. In the first case it suffices if a molecule of one
of the involved species (say A) is adsorbed at a catalytic site, to enable the chemical reaction
with a molecule B. This leads to a chain of two "reactions”, namely A = A* and A*+B — P
where A* denotes the adsorbed species. Here we assume that adsorption is fast compared to
reaction and diffusion, which is often valid in practice. In this situation, adsorption of A can be
modelled as a quasi-stationary process, hence the concentration c4+ of the adsorbed species is
given as ca« = q(ca), where the function ¢ is continuous, increasing and bounded with ¢(0) =
0. The boundedness of ¢ refers to a saturation effect inside the pellet due to the limited number
of available catalytic sites. Consequently, if A*+ B — P takes place with rate ro(c4-,cp), the
overall reaction has rate r(ca,cg) = ro(q(ca),cp). A second mechanism appears if molecules
of both species must be adsorbed to allow for the chemical reaction. In this case the adsorped
concentrations may depend on both ¢4 and cp, since the adsorption processes may interfere.
This leads to a reaction rate of type r(ca,cp) = r9(qa(ca,cB),qp(ca,cp)) with continuous
functions g4, gp satisfying ¢4(0,cp) = qp(ca,0) = 0. However, in each case we end up with
a continuous reaction rate r(-,-) which is defined for nonnegative concentrations, satisfying
r(ca,cg) > 0and r(ca,cg) = 0 if cacg = 0. Notice that any realistic reaction rate rq(-, ), like
ro(ca,cp) = kc%cg with o, 6 > 0 to mention a typical example, has this latter property which
is then inherited by r(-,-). Therefore, concerning the analysis of the mathematical model, no
distinction is made. Finally, the minus sign in front of r(c4,cp) in (16) refers to the fact that
both A and B are educts.

More information on chemical reaction engineering is given e.g. in [76] and [58], while
further details on heterogeneous catalysis including adsorption can be found for instance in
[5] and [115].

In several concrete cases the following additional features occur:

(i) The feeds may vary periodically with time either due to external fluctuations or because

the process is operated in a periodic manner. While the first case happens for instance

in biochemical systems like waste water treatment plants (in which case agglomerates of
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microorganisms play the role of the catalytic pellets), the second situation is quite common
since periodic control (also called ”forced cycling” within this context) is often used to increase
the performance of such processes with respect to conversion or selectivity. An explanation for
this phenomenon is given in [11] for an isothermal second-order reaction 24 — P performed
in a continuous-flow stirred tank reactor (CSTR). The basic idea is as follows: In case of a
constant feed the concentration of the product tends to the unique stationary solution, which
is a convex function of the feed concentration. Hence the average performance over a cycle is
greater than the performance for the correspondingly averaged feed.

Let us only mention two more references from the extensive literature related to periodic
operation of chemical reactors. An interesting, although quite general discussion about the
advantages of forced cycling from a chemical engineering viewpoint is given in [83], while a
summary of some theoretical results for problems involving (linear) diffusion and reaction can
be found in Chapter 8.5 in [4].

(ii) If variations of the temperature are present the reaction rates will also depend on time,
and if these fluctuations are due to seasonal changes in the external environment this leads
to T-periodic reaction rates.

Therefore, besides questions of existence and uniqueness, the problem of existence of a
T-periodic solution appears naturally. In the present section we study this question for the
following reaction-diffusion system, which is of the same type as (16) but allows for m involved

species as well as time-dependent feeds and reaction rates.

% = Apk(vg) +re(t,z,01, ... 0m) fort >0, z€Q
0
Wg(yvk) = ler — hi(vg)) fort >0, z€l (17)
dck
% e —/’yk(ck—hk(vk))d0+Rk(t,Cl,,cm) fort>0
r
k=1,....,m.

In the sequel, we consider (17) under the following assumptions: v, > 0, ¢ : R — R
continuous and strictly increasing with ¢ (0) = 0, hy : R — R continuous, strictly increasing
and onto with hy(0) = 0, 7, : R x Q@ x Rl" — R and R; : R x R — R T-periodic
and of Carathéodory type. We consider problem (17) in an abstract formulation where it is
appropriate to choose an L!-setting in order to exploit conservation of mass. For this purpose
define the operator A in X = L'(Q) x R (with norm |(v,¢)| = |v|1 + |¢|) by

al v )2 —Ap(v) . .
( ¢ ) a /'Y(C—h(v))da or (v,c) € D(A), where
r

dp(v)

D(A) = {(v,¢) € X : p(v) € WH1(Q), Ap(v) € LY(Q), 5
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With this definition the reaction-diffusion system (17) has the abstract formulation
u), + Agug = fr(t,u) on Ry (k=1,...,m). (19)

Here uy = (vg, cx), Ay is the operator given by (18) with ¢, hyx and ~; instead of ¢, h and 7,
respectively, and fi(t,u) = (ri(t, -, v(-)), Rk (¢, ¢)).

In analogy to definition (2), the exact formulation of (18) reads as

(<Z>,<g>)6 gr(A) iff w:=~y(c— h(v)) € L' (') with /Fwdazr

r

and u = ¢(v) is the weak solution of — Au =g in 2, ? =w onl, (20)
v

where v is understood as <p*1(<p(v)‘p). To establish an appropriate compactness property
of the semigroup generated by —A, we shall use the following characterization of Lyapunov

functions, which is a special case of Theorem 19.3 in [17].

Lemma 6.3 Let A be m-accretive in a real Banach space X and M,N : Ry x D(A) —

R U {oo} be lower semicontinuous such that

N(t+ X\ Jyu) + AM(t, Jyu)) < N(t,u) for allt >0, u € D(A) and small X > 0.
Then

t
N(s+1t,S(t)u) —|—/ M(s+7,S(1)u)dr < N(s,u) for all s,t >0 and u € D(A),
0
where S(t) denotes the semigroup generated by —A.

The next results provides several properties of the operator A given by (18).

Lemma 6.4 Let Q C R" be open bounded with C%-boundary T' and X = L'(Q) x R equipped
with the partial ordering (v,¢) < (0,¢) if v <T a.e. on Q and ¢ <. Let A be the operator in
X defined by (18) with v > 0, ¢ : R — R continuous, strictly increasing with ¢(0) = 0 and
h : R — R continuous, strictly increasing and onto with h(0) = 0. Then A is m-accretive

and T-accretive with D(A) = X, and the resolvent satisfies

min{—|v" |s, b 1(c)} v max{|v|o0, h 1 (c)}
( min{h(— o~ |oc), ¢} ) =N < ¢ ) = ( max{A(jv*|so). ¢} >} for all 2>0. (21)

Moreover, S(t)B is relatively compact for t > 0 whenever B C X is weakly relatively compact,
where X = {(v,¢) € X :v,¢ >0} and S(-) denotes the semigroup generated by — A.

Proof. To keep the proof readable we use formal computations (in particular partial inte-
gration) at several places. To make those arguments precise, one may use the following fact:
Let g € L'(Q), w € L'(T), 1 < ¢ < =27 and u be a weak solution of (20). Then there is
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(up) C C?(Q) such that u, — u in WH4(Q), —Au, — ¢ in L'(2) and aaﬂ — w in LY(T);
this is a consequence of Theorem 22 and Lemma 23 in Brezis/Strauss [32].V

Evidently {(v,¢) € X : p(v) — p(h™'(c)) € C°(R2),c € R} C D(A), hence D(A) = X.

To show that A is T-accretive, let H, € C1'(R) with 0 < H, <1, H! > 0 and H.(r) — Ho(r)
as € = 0+ for all »r € R, where Hy(r) = 0 for » < 0 and Hy(r) =1 for r > 0. Fix € > 0, let
(u,r) € A(v,¢) and (w,7) € A(v,¢). Then partial integration yields

[ (=D HAp(w) — p(@))ds = - / (Ap(v) = Ap(E) Heliol0) = () do =

Q Q

7 [ (e =7~ (h(v) = ) Helplo) — p(m))do + [ [9(0(0) = o) PHL(p(0) — o(7))da
> [ (h(v) = h(®) = (c = ) Hel(v) = (7))o

Therefore ¢ — 0+ yields

max/ (u—u)H(v —7)dr = max/ (u—w)H (p(v) — p(v))dz >
Q Q

'y/ — (¢ =72))Ho(p(v) — p(v))do.

-0

[ (@) = @) = (e = o) Hole(0) = (o)) do + max (H(c )| (e =~ (h(v) = h(@)dor) >
r r

This implies

C

2|~
—
A/
S
N——
|
A/
ol <

/uma—Mmﬁda—@—eyj%@—ama+a@xo—a+—Hac—q/m@)—Mmmaza
Iy T Iy

Thus A is T-accretive, hence also accretive due to the particular Banach lattice X. Conse-
quently, Jy is order-preserving for all A > 0, and the resolvent estimate stated above then fol-
lows from (0,0) € A(w,¢) for 7 = h~!(€). For example, the choice of 7 = max{|vT |, h~'(c)}
and ¢ = max{h(|v"|x), c} yields the second inequality in (21).

In order to show R(I + AA) = X for some A > 0, let (7,¢) € X and 0 < A < (yo(')) L.

To obtain a solution of

v—AAp(v) =7 in Q, 9o (v)

zyw—mm)mmyc+xéyw—mmma:a (22)

fix c € R and let ¢(r) = o(r+h 1(c))—@(h 1(c)), B(r) = y(h(r+h 1(c))—c), u=1—h 1(c).
Let Ay denote the operator defined by (2) with ¢ instead of ¢. Since Ag is m-accretive in
LY(2), there is u € D(Ap) such that
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It is then easy to see that v, = u + h~!(c) is a solution of

dp(v)
ov

v—AAp(v) =7 in Q, =v(c—h(v)) onT.

Now consider solutions v; and vy of the latter equation for ¢ = ¢; and ¢ = ¢9, respectively.

Exploitation of

lvg — gl = nggl+ Q(Ul —v2)5e(p(v1) — p(v2))dx

where s, € C1(R) with —1 < s, < 1, s > 0 and s.(r) — sgn(r) as € — 0+, partial integration
and € — 0+ yields
|1)1 - U2|1 S )\")/O(F)|Cl — 02|.

Define ¥ : R — R by ¥(c) =¢— A/ ~v(c — h(v.))do. Due to
r

U(c) =c— )\/ Ap(ve)dr =€+ / (T — ve)dz,
Q Q
the estimate above implies
|U(c1) — U(e2)| < Ayo(D)|er — o] for ¢1,¢0 € R,

hence ¥ is a contraction for A\ as chosen above. Therefore ¥ has a fixed point ¢ for which
(ve, €) is a solution of (22).

It remains to prove the compactness property of the semigroup, where it suffices to consider
B C X bounded in L>®(9; R ) x R since S(t) is nonexpansive, and W C L'(Q2) for bounded

Q is weakly relatively compact iff

sup |w — wX{|w‘<R}|1 — 0 as R — oo.
weWw N

T
For this purpose let us first show that Ni(v,c) = |®(v)|1 + G(c) with ®(r) = / p(s)ds and
0

C

G(c) = / @(h~Y(r))dr is a Lyapunov function for A. Let (7,¢) € X and (v, c) = J)\(7,¢) for
0

A > 0. By convexity of ® > 0 and G it follows that

N, (@,) = /Q(I)('u — MAp(v))dz + Gle+ A /F (e — h(v))do)

> /Q@(v)dx _ A/Q@(U)Aw(fu)dm +G(e) + Ao (e) /F'y(c — h(v))do

> Ni(w.6) + A [ [Ve)da+ 2y [ (p(h ) = p@)(e = h(v))do,

hence
Ni(0,0) + A [ [Vg(v)Pde < Ni(5,0),
Q
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since ¢ and h are increasing. Application of Lemma 6.3 yields
@(u(t))]s + Gl +/ Ve(u(s))2ds < [®(o)y + Gleo) forall t>0  (23)

with (v(-),¢(-)) = S(-)(vo, co)-

To deduce estimates on |V(v(t))|2 for every ¢t > 0, we supplement N; by a second Lyapunov-

like function. Fix a,f > 0 such that |v|c < @ and ¢ < g for all (v,c¢) € B. Let a =
T

max{a,h 1 (B)}, H(r) = /0 h(¢~1(s))ds and define Ny : D(N5) — R by

Noft,v,0) = ¢ (5190 + [ (H(pl) ~ pv)c)da) on

D(N2) = {(t,’U,C) € R+ x X*: (P(U) € Wl’Q(Q)a |U|OO <a,c< h(a)}
Let (¢,7,¢) € D(Ny) and (v,c) = J\(v,¢) with A > 0. Notice first that (21) yields (v,c) € X
as well as |v|oo < a and ¢ < h(a). Due to convexity of H > 0 we obtain
e' [Na(t + X, v,¢) — No(t,7,2)] <

_o—A
3¢ [ (Vo) = 0(0). T pl0) + p(@))ds - -

V()3
e [ (Hipw) = Hp)do = 7o~ [ p(o)do +17 [ ¢(@)do

V()

< e [ (Vlp0) - ola), Tp(w))ds — —
Q
967 [ (00) = p@)h(0)do —7e 2 [ p(w)do + e [ o(@)do

Using partial integration, the resolvent equation and monotonicity of ¢ it follows that

V(o)

et[NQ(t—F)\,U,C)—NQ(t,ﬁ,E)]<"}/C—€ /(P dO—
Exploitation of the resolvent equation for ¢ together with 1 — e < X implies

et[NQ(t + >\,’U, C) - NQ(taﬁa E)]

<ol e [ (e~ hw)do] [ oo — 2wt

IVsO( )3,

since h(v) > 0. By means of the inequalities 1nc0rp0rated into D(N3) this yields

< M[e+ vo(T /(p da—

e'[Na(t + X, v,¢) — No(t,7,2)] < /\w/rw(ﬁ)da B |V<P( )3 (24)
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with g = h(a)(1 +vyo(I')).
Now recall that the trace operator is continuous from W'2(Q) to L?(T"). Since the latter is
continuously embedded into L!(T), there exists K > 0 such that

[ oo < K(lo@B +1Ve@B) " < K (@ el + [Te(@)2),

hence
/Fw(ﬁ)do < K (\ ()o@ + 5 + ilW(@)l%) for all k> 0. (25)

The choice of kK = yuK, combined with (24) implies
No(t + A, v,¢) — No(t,7,¢) < AMe™! with M = WK( An(Q)(a) + WK)
for all small A > 0. Consequently, application of Lemma 6.3 shows that
1= e (5IVplo)B + [ (Hp00) — elo(®)e(®)do — M)
is decreasing, where (v(-),c(-)) = S(-)(vo,cp). Given 0 < s < ¢, this obviously implies
(3190 0)E — ve(0) [ oo — 1) < e (FTp0)B + [ H(w(s)ido).

For v € L*>(Q) with 0 < v < a and ¢(v) € W?(Q) one easily sees that H(p(v)) € W2(Q)
with |H(¢(v))|1,2 < h(a)|e(v)]1,2 and therefore

/H ))do < h(a)K (\/ An(Q)e(v |oo+/-i—|——|V<p( )3) for all x> 0.

~vh(a)K
2

This estimate with x = and (25) with k¥ = ye(t) K imply

GV B — el K (A (@) o 0(1) e +7e(1)K) — M)
< e (IV(0(3)) 3 + 1h(a) K (y An @) [p(0()) o + 37R(@)K)).

Since |¢(v(+))|0o < ¢(a) and c(t) < h(a), integration of this inequality over [0, ¢] together with
(23) implies existence of Cg > 0 such that

~

V()3 < Cg— for all (v,c) € S(t)B

t
notice that S(7)(vg,co) € D(Ns) for (vg, cg) € B and arbitrarily small 7 > 0 by (23). Therefore
{p(v) : (v,¢) € S(t)B} is bounded in W12(£2), hence relatively compact in L?(Q) for all ¢ > 0.
This evidently yields relative compactness of S(¢)B in L'(Q) x R. O

Now we are able to prove existence of T-periodic solutions of (17).
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Theorem 6.4 Let Q C R™ be open bounded with C?*-boundary I'. For every k = 1,...,m
let v > 0, ¢ : R = R be continuous, strictly increasing with ¢r(0) =0 and hy : R — R
be continuous, strictly increasing and onto with hy(0) = 0. Let r : R x Q@ x R" — R™ and
R:R xR — R"™ be measurable and T-periodic with respect to t and continuous in the other
variables. In addition, suppose that there exist ¢,y € R’ with ¢, = hy(y,) and d € L'([0,T))
such that

ri(t,z,y) >0 for 0 <y <7y with yr =0, Ri(t,c) >0 for 0 < c¢ < ¢ with ¢, =0,
ri(t,z,y) <0 for 0 <y <7 with yx =7, Rk(t,c) <0 for 0 <c<T with ¢, =T,
Iri(t, z,y)| < d(t) on [0,T] x Q x [0,7], |Rk(t,c)| <d(t) on [0,T] x [0,¢].
Then the reaction-diffusion system (17), considered as the abstract problem (19), has a non-

negative T-periodic mild solution. In case r and R are independent of t, system (17) admits

a nonnegative stationary solution.

Proof. Let J = [0,7] and X = (L'(Q) xR)™ with |u| = |u1|+. ..+ |um| and |ug| = |vk|1 +]|ck]
for u; = (vg,cr), equipped with the partial ordering u < @ if vy < Ty and ¢ < ¢ for all
k=1,...,m. Define A by

Au = (Ajuy, ..., Apuy) on D(A) = D(A1) X ... x D(An)

with operators Ay given by (18) where ¢, h and « are replaced by @i, hyx and 7y, respectively.
Then A is m-accretive in X since all Aj, have this property in L'(Q) x R by Lemma 6.4.
Let K =K; x...x K, C X with

K ={(v,c) e L}(Q) xR:0< v <T ae. on Q, 0<c <Gl

As a consequence of (21) in Lemma 6.4 the resolvents satisfy (I + AA;) 'K} C K for all
A > 0 and Sy (t) K} is relatively compact in L'(Q2) x R for all + > 0. Therefore J\K C K and
S(t)K is relatively compact in X for all A\, ¢ > 0.

Define f: J x K — X by fp(t,u)(z) = (rg(t,z,v1(x), ..., vm(x)), Rp(t,c1y. ., cm)). It is easy
to check that |f(¢,u)] < m(1+ X\, (Q2))d(t) on J x K, and the Carathéodory property of r and
R is inherited by f. Moreover, given ¢t € J and u € K, the conditions on r; and Ry imply

1

Ep('uk(x) + hri(t, z,v1(z),. .., om(2)),[0,7,]) = 0 a.e. on Qash — 0+,
1
Ep(ck + hRy(t,c1,...,¢m),[0,¢k]) = 0 as h — 0 +.

The dominated convergence theorem implies fj(t,u) € Tk, (u) for all k = 1,....m due to
boundedness of i, Ry for fixed ¢, hence f(t,u) € Tk (u) on J x K. Consequently, Theorem 5.3
yields a T-periodic mild solution u(-) of (19) which is nonnegative since u(t) € K on J. In

the autonomous case, Corollary 5.1 provides existence of a stationary solution u € K. O
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Under the following natural assumptions, Theorem 6.4 applies with ¢ = (|c£|oo, |c£|oo) to the

special reaction-diffusion system (16).

Corollary 6.1 Let Q C R™ be open bounded with C?-boundary T'. Let o, 5 : R — R be
continuous, strictly increasing with ¢ 4(0) = ¢p(0) =0 and ha,hp : R — R be continuous,
strictly increasing and onto with ha(0) = hp(0) = 0. Suppose that cﬁ,cé € L*(R;R4) are
T-periodic and T : ]R?F — R is continuous such that r(ca,cp) =0 if cacg = 0.

Then (16) admits a nonnegative T-periodic mild solution, and a stationary one if the feeds

CQ, cé are constant. If the feeds do not vanish, this solution is nontrivial.

6.4 Remarks

Remark 6.1 The model problem (4) with m = 2 and autonomous g has been considered
in Maddalena [77], but with Dirichlet boundary conditions replaced by the mixed boundary
conditions %(uk) + appr(ug) = 0 on (0,00) x I', where the a4 are sufficiently smooth
nonnegative functions. In this paper existence of a global weak solution of (4) for ug €
L>®(Q;R?) is obtained in the following situation: either ¢y = 0 or ¢x(0) = ¢},(0) = 0 and
i (r), @) (r), ¢} (r) > 0 for r > 0. Furthermore g is assumed to be smooth and quasimonotone
with respect to R2 with g(0) = 0 such that for every y € R? there is 7 > y with g(7) < 0. No-
tice that the latter two assumptions on g imply positive invariance of [0,3] C R for y' = g(y).
If this holds then (4) admits a global mild solution for every uy € L*(£2;RY") by Theorem 6.1
if the ¢ are continuous, strictly increasing with ¢;(0) = 0. Let us also note that, under
the above assumptions on g, no compactness property of the semigroup corresponding to the
diffusion terms is needed, since g is Lipschitz on every rectangle [0,7]. Hence Theorem 4.1
yields a global mild solution for every ug € L*>(£;R), even if some of the ¢, vanish and the
boundary condition for the remaining components is replaced by —d, ¢k (uy) € Bi(ux) where

Bk are maximal monotone graphs in RR.

Remark 6.2 It has been mentioned above that parabolic problems with discontinuous non-
linearities arise in certain limiting cases, and then a natural question is whether solutions
of the limit problem are unique. Of course one cannot expect unique solvability in general,
unless the nonlinearity is of dissipative type, but one may look for conditions that guaran-
tee uniqueness for particular initial values. This is done in Feireisl/Norbury [53], where the

parabolic inclusion
Ug € Ugy + f(u) + AH(u—1) fort >0,z € (0,7)
u(t,0) = u(t,m) =0 fort >0 (26)
u(0,z) = ug(z) for z € (0,7)

has been studied; here f : R — R, is nondecreasing and Lipschitz with f(r) =0 for r < 1,

and A > 0. In this paper local uniqueness is obtained for a certain set of initial values
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ug € C*([0,7]), where the main assumption is given by uf(z) # 0 on {z € [0,7] : ug(z) = 1}.
Furthermore, the authors also provide an example for nonuniqueness in case f = 0.
Let us note that (26) can be rewritten in such a way that it becomes a special case (with
kE=1) of
ut € (k(w)ug)s + Af(u)H(u—1) fort >0,z € (—1,1)
u(t,—1) =u(t,1) =0 fort >0 (27)
u(0,z) = up(z) for z € (—1,1).
Based on the considerations given in Norbury/Stuart [88], the latter has been proposed in
Stuart [104] as a model for combustion in porous media in the limiting case of large activation
energy. The n-dimensional version of this model problem has been studied in Gianni [59]
(under certain assumptions that especially imply uniform parabolicity), in particular with

respect to regularity properties of the free boundary {u = 1}.

Remark 6.3 Let us provide some additional information concerning global existence for
semilinear reaction-diffusion systems of the type

ou . ou .

i DAu+ g(u) in (0,00) x £, o 0 on (0,00) x Iy u(0,-) =wug in £, (28)
where u = (u1,...,up), D = diag(d,...,dy,) with d; > 0 and Q C R" is open bounded with
smooth boundary I'. If the reaction term refers to a concrete systems of chemical reactions
then g will be quasi-positive, and in practice it is almost always possible to find some e G]lo%ﬁ_
such that (g(y),e) <0 on R''; observe that the latter is closely related to mass conservation
since it means that the quantity ejy; + - - - 4+ epmym is decreasing. In this case every set of
the form Cy = {y € R : (y,e) < s} is compact convex and positively invariant for the
ordinary differential equation 3’ = g(y), associated with (28). Consequently, application of
invariance techniques yields global existence of solutions with initial value ug € L*°(€2; R'")
if D = dI (with d > 0), but the latter is not realistic in concrete applications. For general
D it has been mentioned above that the same approach works if 4’ = g(y) admits positively
invariant rectangles (or, more generally, positively invariant tubes with rectangular values).
This invariance approach to obtain global existence for semilinear reaction-diffusion systems
is summarized in Martin [79]; the results given there are closely related to Theorem 6.1 and
Proposition 6.1.

Unfortunately, application of this technique in case of general D requires very strong
assumptions on the underlying systems of chemical reactions. Let us illustrate this be means of
a few concrete examples. In the simplest case m = 2 a single irreversible reaction cA+(5B — P

typically leads to a reaction term given by the so-called Freundlichs kinetics, namely

g(y) = (—akylys, —Bkyfys) with a, 8,k > 0;

here the stoichiometric coefficients o and 3 represent the order of the reaction with respect to

A and B, respectively, and k is the rate constant. In this situation every rectangle [0,3] C R%
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is obviously positively invariant, hence global existence for L®°-initial values holds. In case of

a mixed order reversible reaction aA = B one has

9(y) = (alkayh — kryf), Blkryf — kayd))  with a, 8, k1, kg > 0.

Here g is quasimonotone with g(kl_l/arﬂ, k;l/ﬂro‘) = 0 for all » > 0, and therefore (8) and in

particular (28) admit global solutions for every initial value in L>(€; R%) by Proposition 6.1.
The situation is different for a single reversible reaction of type oA + B = P, even if
a = [ = 1. In this special case the kinetics is usually described by means of g(y) = kvr(y)
with & > 0, v = (=1,—1,1)7 and r(y) = y1y2 — ky3 with x > 0. Here y; + yo + 2y3
is a conserved quantity which yields convex invariant sets of triangular structure, and the
invariance approach is not applicable for different diffusion coefficients. This particular system
has been studied in Rothe [99] where global existence has been obtained in case n < 5. The
case # > 1 is more difficult and considerable effort has been made to establish global existence
for the related model problem (28) with m = 2 and g(y) = (—ylyg,ylyg). For this system
global existence for L°°-initial values has been obtained in Alikakos [1] in case 1 < § < 1+n/2,
and in Masuda [82] for arbitrary 5 > 1. In Hollis/Martin/Pierre [69] this result is extended
to a more general class of reaction terms g : ]R?i_ — R? in case the corresponding system has
similar structural properties. More precisely, global existence for system (28) with m = 2 is
proven under the following assumptions: g : ]Ri — R? is C! and quasi-positive such that
91(y) + g2(y) < @(r) for y € R% with y1 < r and |ga(y)] < o(r)(1 + y2)7 for y € R%
with yo < r, where p,v : R4y — R, are continuous and v > 1, and there is a continuous
N : Ry — Ry such that |ui(2,-)|ec < N() on the maximal interval of existence; in fact this
result is obtained for time-dependent g.

Further extensions to systems with more than two components have been obtained in
Morgan [86], allowing in particular for systems with quasi-positive, locally Lipschitz g of
at most polynomial growth such that Mg(y) < Ly + a with a € R™, L € R™™ and a
nonnegative, invertible, lower triangular m X m-matrix M. This assumptions are satisfies
for a large class of concrete systems; observe for example that g(y) = kvr(y) from above,

corresponding to A + B = P, is admissible by the choice of

1 00 0 0 kr
M=|0120 and L=| 0 0 k&
11 2 0 0 O

Nevertheless, the practically important case of g(y) = kvr(y) with v = (—1,—1,1,1)T and
r(y) = y1y2 — kysys (with k > 0), corresponding to A+ B = P + @, is not covered. Actually,
global existence for this particular system seems to be an open problem.

Additional information and a survey of different techniques to establish global existence
can be found in Martin/Pierre [81].
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Remark 6.4 In Diaz/Vrabie [46] the authors consider (12) in case m = 2, ¢j continuous
increasing with ¢ (0) = 0 and G(y) = G1(y) x Ga(y) where the G, : R? — 2R\ () are usc
with compact convex values. In Theorem 2.1 of this paper existence of a local (weak) solution
of (12) with ug € L>®(£2)? is obtained if the j, are also strictly increasing. The same result
provides the existence of a global solution of (12) if, in addition, there exist R,c¢ > 0 such
that |y|oc > R implies max{yi21,y222} < 0 for some z € G(y) or |z|oc < ¢(1 + |y|oc) for all
z € G(y), where |y|oc = max{|y1],|y2|}. If only ¢ is strictly increasing, the same assertions
hold under strong additional assumptions on Go; see Theorem 2.2 in [46].

Let us note in passing that for continuous, strictly increasing ¢y problem (12) has a global
solution for ug € L®(Q)™ if G : R™ — 28" \ () is usc with compact convex values such that,
for some R,c > 0, |y|oc > R implies max{ygzr : k = 1,...,m} < 0 or |z|ec < ¢(1 + |Y|oo)
for some z € G(y). To see this, let r(-) be the solution of ' = ¢(1 + r) + 1 on R, with
r(0) > max{R, |ugk|e}, and C(t) = [-r(t),r(t)]™. Then the above condition on G implies
G(y) N Te(t,y) # 0 on gr(C), hence a simple modification of Theorem 6.3 (where we have
concentrated on the case C(t) = [0,7%(t)] C R’ to get nonnegative solutions) yields a global
mild solution u of (12).
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87 Instantaneous Irreversible Reactions

We consider chemically reacting systems involving fast irreversible reactions with additional
mass transport due to diffusion or macroscopic convection. A main purpose of the present
paragraph is to show that ordinary differential equations with discontinuous right-hand side
as well as problems with nonlinear diffusion arise naturally if such systems are considered
in the limiting case of instantaneous reactions. In special situations this leads to evolution

problems governed by m-accretive operators with multivalued perturbations of usc type.

7.1 Reactions with macroscopic convection

In this section we concentrate on a rather simple but instructive example of two concurring
irreversible reactions with macroscopic convection. This example illustrates how nonlinear
semigroup theory can be applied to obtain convergence of solutions to the solution of a certain
limit problem, where the latter turns out to be a differential inclusion that corresponds to an

ordinary differential equation with discontinuous right-hand side.

Example 7.1 Consider two concurring chemical reactions C;+Cy — Py, C1+C3 — P, which
are performed inside a continuously stirred tank reactor (CSTR), i.e. the reacting species are
fed into the reactor via a carrying liquid, reaction takes place inside the reactor within the
liquid which is ideally mixed, and products as well as remaining educts are removed through
outlets. Since P, and P> only appear as products, it suffices to consider the time-evolution of
the vector ¢ = (c1,ca,c3) of the concentrations of the species C;. We suppose that the rate
functions are given by so-called mass-action kinetics (see Chapter 4 in Erdi/Toth [49]), and
in this case the rate function for a reaction of type A+ B — P is given by r(ca,cp) = kcacp
with rate constant £ > 0; here the basic idea is that the reaction rate is proportional to
the probability of a “collision” of the involved particles, and that this probability is in turn

proportional to the product of the corresponding concentrations. This leads to the system

& = file) = kicica — kacics
¢y = falc) — kicien
¢z = f3(c) = kacics,

where the f; model in- and outflow as well as additional slow reactions. If further species
Cy,C5, ... are involved in the slow reactions then the system of course has to be enlarged.
This does not affect the subsequent considerations, but for simplicity we continue with this
smaller system.

We obtain convergence of solutions as ki, ks — oo, where the quotient ki /ko is kept con-
stant since this ratio determines how the different species contribute to the different reactions.

Consequently, we consider the limiting process k — oo for the initial value problem
¢ = f(c) —kg(c) on Ry, ¢(0) = co, (1)
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where
g(c) = (c1e9 + Acics, c1e9, Acieg) with A > 0.

Concerning f we assume that f : ]Ri — R? is locally Lipschitz and quasi-positive such that
(e, f(c)) <a(l+]c]) on R} with a >0 and e €R?; (2)

these assumptions are reasonable as will be explained in a more general setting in §8.2 below.

Our aim is to prove that
& = ¢ in C([6,T);R?) as k — oo for all 0 < § < T, (3)
where ¢ is the unique solution of the limit inclusion
¢e€ F(c) on Ry, ¢(0)=cg. (4)
Here the right-hand side F' is defined on D = {c € ]R:j_ : c1eg = c¢1c3 = 0} by means of
( {(f1(c) — falc) — f3(c),0,0)} ifeg >0,c0=¢c3=0

(0.£2(0) = —Z— (0 fo(e) ~

C2
ca + Acs

conv ({(f1(0) = f2(0) — £3(0),0,0),
(0, f2(0) — f1(0), f3(0)),
L (0, £2(0), f3(0) = £1(0))}) ifer=cy=c3=0.

fi(e)} ifer =0,¢0+¢3>0

The initial value ¢§° in (4) is determined by the equations

Ch1 = 0,1 — €02 — €03, Coo = Cos =10 if co,1 > co2 +co3

. (6)

=0, %+ =coztcos—cor, (§%) cos = (co2)*c§s if co1 < cogz+ o3
First of all, existence of a unique local solution ¢*(-) of (1) is a consequence of Corollary 2.1
since the right-hand side in (1) is locally Lipschitz and quasi-positive. Due to (2) we evidently
obtain a priori bounds for (e, c¥(¢)), uniformly in k£ > 0. Hence c*(-) exists on all of R and
satisfies |c¥(t)| < M on [0, T] for every k > 0 with some M = M(cy,T).

To prove (3) it suffices to consider problem (1) for fixed ¢y and on [0,7] instead of R.
Hence we may assume that f is bounded and Lipschitz on ]Ri, possibly after a modification
of f outside of the set {c € R3 : |¢| < M(cy,T)}. Let the norm on R? be given by |- |; and

3
let [-,-] denote the corresponding bracket, i.e. [c, 2] = Zmax(zi Sgn (¢;)). Then
i=1

3

[c — 2, 9(c) = 9(@)] = D _(9i(c) — ¢i(€)) sgn (ci — &)

=1
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= (c1c9 — €1G2)(sgn (c1 — ¢1) + sgn (ca — T2))
+A(cies —¢ic3)(sgn (c1 —¢1) + sgn(c3 —¢3)) >0

for all ¢, € R3, hence g is accretive. Therefore Ai(c) = kg(c) — f(c) on R? defines an
w-accretive operator, where w > 0 is a Lipschitz constant for f. We claim that —F C Ay :=

likm inf Ay, which requires computation of Ay,. Since f is continuous we have Ay, = —f + B,
— 00

k

where By, = likminka with By(c) = kg(c) on R%. Let (c,2) € B, ie. ¢ = lim ¢* and
—00

z = klirglo kg(cF) with (F)gso C R3. In particular this implies g(c) = 0, hencek?)(x(jBoo) =
D(Ax) = D. Now we only consider the case ¢ € D with ¢; > 0 in more detail. Then
kg(c*) — z implies kck — a, kck — b for some a,b > 0, hence z = (a + 3,a,) with
certain o, 8 > 0. Conversely, if ¢ € D with ¢; > 0 and «,8 > 0 are given then the choice
of ¢* = (c1,a/(key), B/ (key)) for k > 0 shows that z = (a + 3, a, 3) belongs to By (c). By

means of similar computations in the case cs + ¢z > 0, respectively ¢ = 0, we obtain

( 1 1
{al 1 |+8| 0 | :e,8>0} ifci >0,c0=c3=0
0 1
Aoo(c) = —f(c) + 1
1 1
{acs | 1 [+aree| 0 |:a>0} ifeg =0,c0+¢3>0.
| 0 1

Then —F C Ay follows directly from the definition of F. At this point some comments about
the relation between A,, and F' are in order. In view of Theorem 1.4 a natural candidate for
the limit problem is

¢+ Axc>0 on Ry, ¢(0) = cp, (7)

but this inclusion is not appropriate for practical purposes since A, has unbounded values.
On the other hand, every mild solution ¢ of (7) for ¢§° € D is Lipschitz continuous since D =
D(Ax), hence ¢ is a strong solution. Consequently ¢ satisfies ¢(t) € —Ay(c(t)) a.e. on Ry
and also ¢(t) € Tp(c(t)) a.e. on Ry. Therefore F' in (5) is defined as F(c) = —Ax(c) NTp(c)
on D\{0}. The value of F at the point ¢ = 0 of discontinuity is obtained by usc regularization,

ie. F(0) = () nvF(Bs(c) N D).
>0
Now observe that F' satisfies F/(0) N Tp(0) # 0 since, depending on the sign of f;(0) —

f2(0) — f3(0), the set F(0) intersects Ry x {(0,0)} or {0} x R%. Hence F : D — oR? \ 0 is usc
and bounded with compact convex values such that F(c) N Tp(c) # 0 on D. Consequently,
initial value problem (4) admits a strong solution for every ¢§® € D as a consequence of
Theorem 2.1. Moreover, this solution is unique since F' is w-dissipative due to —F C Ax.

Then application of Theorem 1.4 shows that

(k) C R3 with ¢f — ¢§° € D implies ¢*(-; ck) — ¢®(¢g°) in C([0,T]; R?), (8)
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where ¢*°(-;¢§°) denotes the solution of (4). In case ¢y € D this yields the convergence
announced in (3); notice that ¢y = ¢§° then. Given an arbitrary initial value ¢y € ]R:j_ and
0 < § < T, it remains to show that

F(c0) = ¢®(5¢5°) in C([6, T]; R®) as k — oo,
and the latter follows from (8) if c¥(8;co) — ¢ (8;¢5°) holds. Consider 2*(t) = ¢*(t/k; co) on
R.. Evidently z*(-) is the solution of

= LF(H) — g Ry, H0) =,

hence z*(t) — z(t) uniformly on bounded subsets of R, where z(-) is the solution of
z2=—g(z) on Ry, z(0)=co.

Since all components of z(-) are decreasing and nonnegative it follows that z := tlim z(t)
— 00

exists. Suppose for the moment that 2 = ¢§°. Then, given € > 0, there is ¢ > 0 such that

|z(0) — c®|1 < e. Therefore |2F(0) — |1 < 2¢, ie. |cF(o/k;co) — c®l1 < 2€ for all k > k..

Since all Ay are w-accretive this implies
| (8;¢0) — (6 — o /k; )1 < |F(o/kico) — c§°]1e°O7/%) < 2¢¢® for all large k.
Hence ¢*(+;¢) — ¢ (- ¢§°) in C([0,0];R?) by (8) yields
| (85 ¢0) — (05 ¢F)|1 < 26’ + ¢ for all large k,

and therefore ¢*(8;cp) — ¢ (0;¢§°) as k — oc.
It remains to show 2 = ¢{°. Evidently 2; > 0 for i« = 1,2,3 and ¢(2) = 0, hence 2,2 =

z123 = 0. Due to the special structure of g we also have 2; — 29 — 23 = ¢p,1 — cp2 — o 3.

t t
Furthermore 23(t) = cp2exp ( —/ zl(s)ds) and z3(t) = co3exp ( - )\/ zl(s)ds) imply
0 0

oz = % cé’Q. Therefore % is a solution of the equations in (6), hence 2z = ¢g°. &

Let us note in passing that the convergence result given in Example 7.1 can be extended to
the case of m > 2 fast irreversible reactions if at most two educts are involved in each fast
reaction and all stoichiometric coefficients are equal. Here the first assumption is indispensible
in order to obtain accretivity of the fast reaction term in (a weighted) /'-norm; recall that the
corresponding estimate in Example 7.1 relies on the fact that the sum sgn (¢; —¢)+ sgn (co —
C2) vanishes on the set where no information on the sign of ¢jco — €€ is available. While
this condition is often satisfied if elementary reactions are considered, the second assumption
above is a severe restriction.

The occurence of discontinuous right-hand sides in the limiting case of instantaneous

irreversible reactions is another motivation to study multivalued perturbations of m-accretive
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evolution problems, if (1) is only part of a larger ode/pde-system. Let us illustrate this
point by means of the following example. Suppose that a heterogeneously catalysed reaction
A+ B — P is performed, that takes place inside porous catalytic pellets which are suspended
in the bulk phase of a CSTR; cf. the explanations given in §6.3. Assume that A itself is
formed by a preceding reaction C'+ D — A inside the bulk phase, while B is directly fed into
the reactor and is accompanied by a further species E of impurities, say. Now if £ in turn
reacts with C then two concurring reactions C + D — A and C + E — @ occur, and we end

up with the following mathematical model for the overall process.

Ouga = Apa(ug) —r(ug,up) inQ, dhpa(ua) =v4a(ca —ha(ug)) onT
oup = App(up) —r(ua,upg) inQ, ep(up) =vp(cg —hp(ug)) onT
ca = falce )+kcch—/'7A (ca —ha(up))do

/'YB cCp — hB(UB)) dU

¢cg = fele)—
¢cc = fele) —kecep — kXecer
¢p fp(e) = kecep
¢g = fre(c) —kXcoep
with ¢ = (¢4, ..., cp); for the meaning of the different terms as well as reasonable assumptions

see §6.3 and Example 7.1.

The system above is obtained under the simplifying assumption that the effect of diffusion
of the species C, D and FE into the pellets is negligible compared to the influence of the fast
reaction of these species inside the bulk phase. This assumption is reasonable in practice, in
fact it may happen that some of the species cannot diffuse into the pellets due to the specific
pore structure. By the considerations given in Example 7.1 it is then plausible that in the

limiting case k — oo, this process is described by the following system.

dua = Apa(ua) —r(ua,up) inQ, dypa(ua) =va(ca —ha(us)) onT
oup = App(up) —r(ua,up) in Q, Jypp(up) =vp(cg —hp(ug)) onT

ea = Lal0)+Ip(©) = 9p(e) = [ valea—haun) do

tp = falc)— / vs(cp — hp(up)) do
cc = gcle)
¢p = gp(c)
¢e = ge(c)

with discontinuous g = (9¢, gp, gr) given by
(fc(c)—fD(c)—fE(c),O,O) ifcc >0,ecp=cp =0

(0. F(e) = —L—fe(e), firle) - —2E

p—— fc(c)) if coc =0,¢p +cg > 0.

c¢p + Acp
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If ¢ is replaced by its usc regularization G (corresponding to F' in (5)), the resulting version

of the limiting problem admits an abstract formulation of the type
v € —Au+ F(u) on Ry, u(0)=ul®

in X = L'(Q)? x R’ with u = (ua,up,c), where A is m-accretive and F' is e-0-usc on every
subset K x R® of X with K bounded in L>(9)?; these facts follow from the results in §6.

So far we have been able to carry out the limiting process in the following special case:
the semigroup generated by —A is compact (which can be shown if @4, pp are continuously
differentiable on R\ {0} such that ¢/, ¢'; satisfy the estimate mentioned behind Lemma 6.1),
the initial value uy belongs to the “limiting manifold” (i.e. c%c} = %% = 0, and then
ud® = ug), the system is decoupled (in the sense that fc, fp, fr are independent of c4,cp)
and fc(0) # fp(0) + f£(0). In this particular situation convergence of z¥ = (ck,, ck, k) to
the solution of 2 € G(z) is a consequence of Example 7.1, and z(-) cannot come to rest at zero
due to the last assumption above. Then it is not difficult to show that ¢ = kc’éc]z) satisfies
ér — ¢ in L([0,T]) for every T > 0, and ¢(t) = fp(z(t)) — gp(2(t)) a.e. on [0,T]; notice
especially that

9 (chely) < Foleh)eh + To()ch — k(ck+ b + Ach)ckich,
and z¥(-) is bounded on [0, 7] uniformly with respect to k > 0 since we obtain a priori estimates
on |uali +|up|i +|¢c|1 due to mass conservation. As a consequence of the compact semigroup,
the sequence of solutions ((u’j‘, u%, c’j‘, c’f_})) of the first part of the system is relatively compact
in C([0,T]; L' (2)? x R?), and every accumulation point is a weak solution of the limiting
problem. Since uniqueness of weak solutions of the quasi-autonomous problems associated
with the particular m-accretive operator given by (18) in §6.3 can be obtained by means of
the techniques from Brezis/Crandall [30], it follows that the whole sequence converges to the
unique solution of the limiting problem.

Let us finally mention that other related models lead (at least heuristically) to limiting
problems in which the pde-part corresponds to an accretive operator in an appropriate L'-
setting that is not m-accretive but satisfies the range condition; see also Remark 7.2 below in

this respect.

7.2 Reactions of diffusive species

In the present section we consider a single irreversible reaction A + B — P between mobile
species that takes place inside an isolated vessel (or pellet), represented by a certain bounded

region 2 with smooth boundary I'. This leads to the following model problem, where u; and
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ug denote the concentrations of A and B, respectively.

_8(;11 = Api(ur) — kr(up,ug) in (0,00) x Q
aUQ .
— =A —k Q
5 o (u2) r(up,ug) in (0,00) X o)
Op1(u1)  Opa(ug)
- o 0 on (0,00) x I'

’LLl(O, ) = ’LL()’l, ’LLQ(O, ) = U(]’Q iIl Q

with continuous, strictly increasing ¢y : R — R such that ¢;(0) = 0, rate constant £ > 0 and

a continuous rate function r : ]Rﬁ_ — R such that
r(-,-) is increasing in both variables with r(a,b) = 0 iff ab = 0; (10)

recall that the latter is a realistic assumption for rate functions.
As before, we are interested in the singular limit & — oo, corresponding to the case of an

instantaneous reaction. We consider (9) as the abstract evolution equation
u' + Au = Fg(u) on Ry, u(0) = up (11)

in X = L'(92)?, and use nonlinear semigroup theory to carry out the limiting process; here A
and Fj, are defined by
uq —Ap(u1) .
A = with
()= (8nte

D(A) = {u € X : gi(u;) € WHHRQ), Ap;(u;) € LHQ), a‘%i(yui) =0onT fori=1,2},

Uy _ [~k r(ui(z), uz(z)) _ . 1)

Fy, < ) (z) = (—kr(ul(m),UQ(x)) on D(Fy) ={u € X : r(u1(:),uz(-)) € L () };
cf. §6.1 concerning the precise definition of A. Given an initial value ug € L*(; ]Rﬁ_) we prove
that the corresponding mild solutions u*(-) of (11) satisfy u% (t) — w*(¢) and uk(t) — w=(¢) in
L'(£2) uniformly on compact subsets of (0, 00). Here w™,w™ denotes the positive, respectively

negative part of the mild solution w(-) of

ow . dp(w)
i Ap(w) in (0,00) x Q, 5

=0 on (0,00) xI', w(0,:) =wg in (12)

with wo = up,1 —ug2 and ¢ : R — R given by

p1(r)  ifr>0
—po(—r) ifr<O.

129



Theorem 7.1 Let @ C R™ be open bounded with C%-boundary T'. Let X = L'(Q)? with
|u| = |ui|1 + |uz|s and A: D(A) C X = X as well as Fy, : D(Fy) — X be defined as above,
where p1,09 : R — R are continuous, strictly increasing with ¢r(0) = 0, and r : ]R?F - R
is continuous satisfying (10). Given ug € L*®(;R2) the initial value problem (11) has a

unique mild solution u*(-) for every k >0, and

<u’£(t;) . (Zﬂt)) in C([6,7); X) as k — oo for all 0 < § <,
2

u

where w(-) is the mild solution of (12) with ¢ from (13) and wo = ug; — wo2. If the initial

value ug satisfies ug1ug2 = 0 then 6 = 0 is admissible.

Proof. 1. Given ug € L®(Q;R2) and k > 0, existence of a mild solution of (11) can be
obtained by means of Theorem 4.2(b) as follows. First of all, it suffices to consider initial
value problem (11) on J = [0, T, with arbitrary T > 0, instead of R;. Let

K={ueX:0<u(z)<|up

00y 0 < ug(z) < |upz|e a.e. in Q}.

Evidently K is closed with K C D(F}), Fj is continuous and bounded on K, and Fj(u) €
Ty (u) on K as a direct consequence of (10). Furthermore, Fi(K) is a bounded subset of
L>(9)?%, hence Fy(K) is weakly relatively compact in X. Due to Lemma 6.1, the operator
A is m-accretive in X and satisfies (I + AA) 'K C K for all A > 0. Let S : L'(J; X) —
C(J;X) denote the solution operator of the quasi-autonomous problem associated with A.
Then & maps weakly relatively compact sets into relatively compact sets, which follows from
Lemma 6.2(a) and the remark given behind this lemma. Consequently, Theorem 4.2 applies
and yields a mild solution of (11) on J.
To obtain unique solvability of (11) notice that the bracket in X is given by

[u, v] = max (/ vy Sgnuy dz + / Vg Sgn Uy dm) for u,v € X
Q Q
where, e.g., Sgnuy is short for {w € L}(Q) : w(z) € Sgn (uq(x)) a.e. on Q}. Hence

[u — @, Fy(u) — F},()] = max (—k/ﬂ(r(ul,w) — r(7, 7)) (Sgn (w1 — ) + Sgn (up — ) )da

— _kmin (/Q(r(ul,uQ) — (1, ) (Sen (uy — 1) + Sgn (uz — 12))de) < 0;

recall that r(a,b) is increasing in a, b and observe that (r(a,b) — r(a,b))(sgn(a —a)+5) >0
1

)
for a # @ and every 8 € [—1,1]. Therefore —F}, is s-accretive, hence (11) has a unique mild
solution u(-) and u(t) € K on R.

2. Let # : R?> = R be given by #(a,b) = r(p(a),q(b)) where p,q : R — R denote the

metric projections on [0, |ug 1

o), respectively [0, |ug2|oc]. Evidently 7 is continuous, bounded
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and increasing in both variables. By the previous step the solution of (11) remains the same

if we replace —F} by
. Uy k7 (ui(x), us(x))
By: X —- X with B T) = . ;
g with By <u) (=) (m(m(x),m(w))
and By, is continuous, everywhere defined and also accretive. Therefore Ay := A + By, with
D(Ag) = D(A) defines an m-accretive operator in X for every k& > 0 by Theorem 5.5.
Hence — Ay generates a nonlinear semigroup T (¢) and the mild solution of (11) is given by

uk(t) = Ty (t)ug on R
We are going to apply Theorem 1.4 where the first step is to show that

I\ = (I +MAg) '@ exists for all @ € L(Q; R2). (14)

lim
k—o0
For this purpose let u € L (Q; ]Rﬁ_), A > 0 and k£ > 0 be given and consider the resolvent

equations

k
uk — Ay (ub) + Ak F(uk,uk) =7 in Q, a‘”gifj“l):o on T

k
ub — MA@y (ub) + Mo F(ub, ub) =1, in Q, 6('027(:2) =0 onl.

Let Agv denote the operator in L' (£2) corresponding to —A¢; (v) with homogeneous Neumann

boundary condition; cf. §6.1 for the precise definition. Then
ub = (I +XAg) Y@ — Mer(ul, ub))

yields u¥ < || by Lemma 6.1 since #(-,-) > 0. To obtain u¥ > 0 let R : L'(9) — L' ()

be given by (Rv)(z) = kf(v(z),ub(z)) where k > 0 is fixed. Then Ag + R is T-accretive in

L'(9) since Ag is T-accretive and R satisfies
min (/Q(Rv — Rv)H (v — ﬁ)d:v) >0 forov, 7€ LY(NQ).
Consequently, the resolvents of Ay + R are order-preserving and therefore
ub = (I + XA+ R)) ', > (I+ XAo+ R)) 0) =0.
Integration of the first resolvent equation over €2 yields
a1+ AR (uf, uS) [ = [,
and multiplication of the same equation by ¢ (u¥) and integration over Q implies

MNVer (wh)[3 < [ar e(ui)h < [@hlen(u))|eo < [ailiern([Tle).

131



Together with the analogous inequalities for u% it follows that (¢1(u¥))rs0, (02(ub))p>o are
bounded in W12(Q), hence relatively compact in L?(2). Due to the L>-bounds for u* this
also yields relative compactness of (u*) in L?(Q2). Therefore, given any sequence ki — oo,

there is a subsequence of (u*i) which is denoted by (u*!) for simplicity, such that
ulf‘ — Uy, ugl — ug, V(pl(ulfl) — Vi (u), V(pg(ugl) — Vs (ug) in L*(Q).

It will be shown below that the limit u is uniquely determined, which implies that the original
sequence (u*i) converges to u for arbitrary k; — oc, hence (14) holds. Now observe that
u1,us > 0 a.e. in Q and also ujus = 0 a.e. in Q; the latter follows from 7(u¥, uk) — #(uy, us)
in L'(Q) and |#(u}, u%)|; — 0 which yields #(u1,us) = 0 a.e. in Q. Hence u; and uy are given
as up = w" and us = w—, respectively, if we let w = u; — uo. It is consequently sufficient to
ky
1

show that w is uniquely determined. For this purpose let w! = u7! — ugl and w = u; — Uo.

Multiplication of the resolvent equations by ¢ € C'(Q2) and integration over  yields
/le¢d:v—|—>\/Q(V<p1(ulfl) — Ve (uh), V) da = /Qm(ﬁd:v for all [ > 1,
hence [ — oc implies
/quﬁdm + A/Q(Vgol(ul) — Vo (ug), Vo)dx = /quﬁdm for all ¢ € CH(Q).
Now recall (see e.g. Chapter I1.4 in Ladyzenskaja et al. [75]) that
Vht =Vh ae. in {h >0}, Vh~ =—-Vh ae. in {h <0}, VR=0 ae. in {h =0}

for h € WH1(Q). Due to ujus = 0 a.e. in © we therefore obtain

V(pi(u1) — @a(uz)) = Vei(ur) = Vi (w) = Ve(w) a.e. in {u; > 0} = {w > 0},
V(p1(u1) = p2(u2)) = =Va(uz) = =V (—w) = Vo(w) ae. in {uz >0} ={w < 0},
V(pi(ur) — @a(uz)) = 0= Vo(w) a.e. in {u; = ug = 0} = {w = 0},

where ¢ is given by (13). Therefore w satisfies

/ wedz + A/ (V(w), Vyds = / wpdz for all ¢ € CL(Q),
Q Q Q

i.e. w is a solution of the resolvent equation w + ABw = w, where the operator B is defined
by
Bw = —Agp(w) on
dop(w)
ov

cf. definition (2) in §6.1. Consequently w is uniquely determined as w = (I + AB)~'w since

D(B) ={w € L'(Q) : p(w) € WH(Q), Ap(w) € L'(Q),

=0 onI};

B is m-accretive by Lemma 6.1, and therefore (14) is valid. Actually we obtained somewhat
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more, namely

I\ = (I +XAg)™ '@ exists for all w € X, := L'(Q;RY),

lim
k—00
Jyi € D = {u € L'(Q)? : uy,us > 0,uyus = 0} on X, (15)
LJy= (I +AB) 'L on X, with Lu := uy — us;

notice that convergence on X follows from (14) since the resolvents of Ay are nonexpansive
and L*®(Q;R?) is dense in X.
3. By means of (15) we are able to obtain convergence of (u*(t)) in case the initial value

ug satisfies ug 1up2 = 0. Define the operator A, in X by means of

1
gr (Aso) = {(1r7, NG I\0)) 1A > 0,7 € Xy}
From the first line in (15) it follows immediately that A, C likm inf Ay, hence Ay is in
—00
particular accretive. By definition of Ay it is also clear that Jy are the resolvents of Ay, and

R(I + M) D X4 for all A > 0. Moreover, the second line in (15) yields D(A) C D and

then D(A) = D follows from

D(Ay) = {(wF,w™) :we D(B)} D {(w",w ) :we L'(Q)} =D,

Therefore Ay is accretive and satisfies the range condition, hence — A, generates a semigroup

T'(t) of nonexpansive mappings on D. Then applications of Theorem 1.4 shows that
(uf) C Xy with uf — ug € D implies Ty (t)uf — T(t)ug on R, (16)

where the convergence is uniform on bounded sets.
It remains to identify the semigroup 7'(¢). For this purpose notice that Ljp : D — LY(Q)
is nvertible with L; ) (w) = (w*,w™). Hence (I +AAo)™" = Li (I +AB)~'L by (15) yields

L(I+MXAx) "=UI+AB) "L on X, foralln > 1.

Let S(t) denote the semigroup generated by —B on L!'(f). Since S(t) and T'(t) are given by

the exponential formula, the equation above implies
LT(t)=S(t)L on D for ¢t > 0,

hence

Therefore
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if the initial value belongs to D, i.e. in case uy € L*(£; ]Ri) with ugug2 = 0.
4. Given an arbitrary initial value ug € LOO(Q;]Rﬁ_), let wo = ug,1 —up2 and 0 < < 7.
We then have to show

uk u w w
(ué%) = Ty(t) (uEé) — (wiEiD =T(¢) <w§_—> uniformly on [4, 7] as k — oo,

and the latter follows from (16) if

Tx(0) <u0,1> — T(9) <w6_r) as k — oo. (17)
Wo

Uo,2

To obtain (17) consider @*(t) = u*(t/k). Exploiting the fact that u*(-) is the integral solution
of
u' + [A—i—k‘Bl]u =0 on Ry, u(0)=ug

it follows immediately that @*(-) is the integral solution of

1
i + [EA—i—Bl]u =0 on Ry, 4(0) = uo.

1
To obtain convergence of (4*), we compute L := lim inf [EA + Bl]. Evidently Biu € Lu for

k—oo

allu € D(A), hence Byu € Lu on D(A) = X since B : X — X is continuous and L has closed
graph. Therefore gr (B1) C gr (L) and then B; = L since B is m-accretive, hence especially

maximal accretive, and L is accretive. Consequently, Theorem 1.4 yields
@* — 4 in C(0,0]; X) as k — oo for all o > 0,
where 4(-) is the solution of
@+ B =0 on Ry, 4(0) = up. (18)

For the subsequent argumentation we need to know the asymptotic behavior of 4(t), and
here it is helpful to observe that (18) is in fact a family of ordinary differential equations,

parameterized by x € 2. We therefore consider

a' = —7(a,b) on Ry, a(0)=ag

a
/ N (19)
b = —r(a,b) on Ry, b(0) =by

0
0.

AVANIV

Now recall that # : R? — R is continuous and increasing in both variables with #(a,b) = 0
ifa <0orb <0, and 7#(a,b) = 0 with a,b > 0 implies ab = 0. In particular, the right-
hand side in (19) is dissipative in (R?,|-|;). Hence (19) has a unique solution (a(t),b(t)) =
(a(t; ag,bo), b(t; ag, b)) for every ag,byg. Evidently a(t) N\  aoo > 0 and b(t) N\, bso > 0 with
7(Goos boo) = 0, 1.6, oobeo = 0. Furthermore as, — boo = ag — by since (a — b)’ = 0 on Ry,

hence aq = (ag — by)™ and boe = (ag — bg) . Consequently,

a(t; ao,bg) — (a(] — bg)+, b(t; ag,bo) — (a(] — bg)_ as t — oo. (20)
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Let 4y (t)(z) = a(t;uo,1(x), uo2(x)) and ay(t)(z) = b(t;uo,1(x), uo2(z)) for t > 0 and z € Q.

Then 4 is the strong solution of (18), hence (20) together with the dominated convergence

) _ + +
?l(t) — (o, uO’Q)_ = (") inXast— oco.
ug (t) (’LL()’l - UO’Q) Wy
Now we are able to obtain (17) as follows. Given e > 0, there is o > 0 such that

‘ (Z;EZ;) — (Zg_r) ‘ <€, hence ‘ (Zgg;;) — (gg_r) ‘ < 2¢ for all k > k..

Translated to the original time scale the latter means

+
Te(o/k) [ YO0 ) — (90 )| < 2¢ for all k > ke,
Wo

0,2

theorem implies

which implies

+
‘Tk(é) (ZE’;) —Ty(0 — o /k) (Z?}_) ‘ < 2¢ for all large k.

Since (wg ,wy ) belongs to D, exploitation of (16) yields

T (%) <w6"> — T(t) <w3’> uniformly on [0, ],

and therefore

+
‘Tk(5) <u0,1> —T(9) (ZE) ‘ < 3e for all large k.

Uo,2

Consequently (17) holds which ends the proof. O

7.3 Remarks

Remark 7.1 Theorem 7.1 is Theorem 1 in Bothe [26] and contains the main result in Evans

[51] where the following special case of system (9) has been considered.

uy = d1Au — kuw in (0,00) x
vy = doAv — kuv in (0,00) x Q
dyu=0,v=0 on (0,00) x 9N

u(0,-) = ug, v(0,) =vo in .

In this paper convergence of (u*,v*) to (w*,w™) in L'((0,T) x ) is obtained in the regular
case when the initial values satisfy ugvg = 0. Observe that we cannot expect to obtain

convergence of u¥ to a limit u* in C([0,7]; X) in the situation of Theorem 7.1 with arbitrary
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ug € L°°(Q;]Ri), since a jump at ¢ = 0 develops as k — oo; notice that u®(0) = wg
but u®(0+) = ((uo,1 — wo2)", (up,1 — ug,2)”). This phenomenon is intuitively clear from
the physical background: in the limiting case k = oo the concentrations of A and B will
be instantaneously reduced at every point by such an amount that one of them vanishes.
Thereby a separating interface develops which then starts to move, driven by diffusion of A

and B towards this free boundary.

Remark 7.2 In Hilhorst/v.d. Hout/Peletier [67] the authors study a problem that is related
to Theorem 7.1, namely the instantaneous limit for a single irreversible reaction between a
mobile and an immobile species. Further assumptions lead to the following reaction-diffusion

system with one spatial dimension.

Up = Ugy — kuv, vy = —kuv fort> 0,2 >0
u(t,0) = (t), u(0,-) =0, v(0,-) =vy > 0.

Under appropriate conditions on 1), convergence of u*, v* to certain limit concentrations u, v
is obtained. Furthermore it is shown that a free boundary (given by a single point p(t) due
to the one-dimensional setting) develops as k — oo, which separates the two regions where
u > 0 and v = 0, respectively u = 0 and v = vg. Here the limit problem for u, p turns out to
be a classical one phase Stefan problem.

Let us note that several processes in Chemical Engineering lead to related moving bound-
ary problems, called core-shell models in this context. For a realistic model of such a process
additional aspects like macroscopic convection and mass transfer resistance have to be taken
into account. The following model occurs for example in semibatch regeneration of exhausted

ion exchangers and has been studied in Bothe/Priiss [27].

0 1

a—: = Dr—2(r2v,«)r t>0,p(t)<r<R

0 1

a—?:D'ﬁ(TQwT)T t>0,R<r<R+9

dp3 (21)
e —kp?v,(t, p+) t>0

dc

E:—awr(t,R—i-(ﬂ—i—ﬂ(é—c) t>0

with boundary and initial conditions
v(t, p(t)) = 0, vr(t,0) = 0, v(t, R) = w(t, R)/Ha,
Duv,(t, R) = D'w,(t, R), w(t, R+ d) = c(t), (22)
v(0,-) =01in [0, R], w(0,-) = wg in [R, R+ 6], p(0) = R, ¢(0) = co.
Here v denotes the concentration of the mobile reactand A inside a spherical pellet of radius R,

w is the concentration of the same species in a stagnant film of thickness 0 around the pellet,

p denotes the position of the moving boundary that corresponds to the reaction front, ¢ is the
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bulk concentration and ¢ the feed concentration of A; see [27] for further explanations. Here,
let us just mention that [27] provides a new approach to this type of “nonstandard” Stefan
problems, based on the use of p® as an explicit system variable which then allows application
of the theory of accretive operators and nonlinear semigroups. To be more specific, let
X = LY([0, R],r*dr) x L'([R, R+ 6],7°dr) x R?,
equipped with the norm
D D’
| = fols + s + 1% + (R0l for = (0,w,%,0) € X
and the partial ordering

u<u iff v<Tae. in[0,R], w<wae in[R,R+6], p>p, c<C.

Define the operator A in X by means of

v Df%ar(ﬂarv)x(p’m
a| v _ D'T%(?T(rzarw)

p’* —kp?0pv(p+)

c

—ad,w(R +0) + p(¢ — ¢
with
D(A)={ue X: veWh([0,R)), V|[p,R] € W2l([p, R]), w € W3Y([R, R+ §)),
v>0,v=01n (0,p), v'(0) =0, w>0,p € [0,R], ¢ >0,
v(R) = w(R)/Ha, Dv'(R) = D'w'(R), w(R+ 0) = c}.

Then A is accretive and T-accretive in X, and satisfies the range condition. Based on these

facts, the following result concerning the dynamics of this core-shell process is obtained.

Theorem 7.2 Suppose that all constants D, D', Hy, R, 0, c, 3,k,¢ are strictly positive, and
let X, |||, < and A be defined as above. Then problem (21), (22) has a unique mild solution

u(t) = S(t)ug for every initial value ug € D(A), and the semigroup S(t) is nonerpansive

and order-preserving on D(A). There is a unique steady state us, = (¢/Ha,¢,0,é) € D(A)
which is globally asymptotically stable. Given ug € W, the free boundary p(t) is contin-
uous, decreasing and reaches zero in finite time, i.e. there exists a time T(ug) > 0 such
that p(t) > 0 is strictly decreasing on [0,7(ug)) and p(t) = 0 on [T(ug),00). Furthermore, if
up = (v, wo, pi,co) € D(A) is such that vy € L*([0, R],r?dr) and wy € L*([R, R + 0], 72dr),
then the corresponding mild solution u s also a strong solution and satisfies

u € WH™((0,00); X), v € C((0,00); WH2(0, R)), w € C((0,0); W2(R, R + 6)),

v(t,-) € W22(p(t), R) for each t > 0,t # 7(u®),
and the boundary conditions in (22) are valid for all t > 0, t # 7(uP).

Let us finally note that related model problems have been studied in Conrad/Hilhorst/Seidman
[37] and Friedman/Ross/Zhang [56].
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88 Instantaneous Reversible Reactions

We continue to study chemically reacting systems involving fast reactions with additional
mass transport but, in contrast to the previous paragraph, we consider the case of fast re-
versible reactions. We are again concerned with the passage to infinite reaction speed, which
requires different techniques compared to the irreversible case. For this reason, we start with
a compilation of known facts concerning the dynamics of systems of independent reversible re-
actions (with finite reaction speed) under the assumption of mass-action kinetics. We include
a short proof adapted to the special situation considered here, since most of the arguments

will also be important in the study of the instantaneous reaction limit.

8.1 Systems of independent reversible reactions

Suppose that m reversible reactions
Oéj7101 + ...+ Oéj7n0n = ﬁj,lCl + ...+ ﬁj,nCn (_] =1,... ,m)

take place inside a continuously stirred isolated vessel, involving chemical species C1, ..., C,.
Here aj = (aj1,...,a5,) and B = (Bj1,--.,Bjn) with a;;, 8;; € INg are the stoichiometric
vectors corresponding to the 7' reaction. We always assume independence of the reactions,
which means that {vi,...,vy,} with v; := B — «; is a linearly independent subset of R".
Equivalently, the stoichiometric matriz N = (vI,... vl) satisfies ker(N) = {0}. On the

basis of mass-action kinetics the rate function of the j* reaction is given by

ri(c) = k;j(c® — k;cP) with kj, k; > 0,

n
where ¢¥ = H i for ¢ € R} and z € Njy (with 07 := 1).
i=1
In this situation, the time-evolution of the vector ¢ = (cy, ..., c,) of concentrations of the

corresponding species is governed by the initial value problem
m
¢ = Z vjri(c) on Ry, ¢(0) = co. (1)
j=1

Since the right-hand side has its values in the stoichiometric space S = Im(N), every solution
remains inside the so-called stoichiometric class co+S determined by its initial value cy. Below
we will sometimes use the dual formulation of this fact: if E' denotes an (n —m) X n-matrix
of full rank such that ker(E) = S, then Ec(t) = E¢y for every solution of (1). In the sequel
the letter £ will always stand for such a matrix. Evidently Im(E”) = S+ then, and every
e € S\ {0} corresponds to a ”conservation law” of the system of chemical reactions. The
system is said to be conservative if there is e € S+ which is strictly positive (i.e. e; > 0 for all
i). The latter holds in practice if all involved species have an atomic structure, and the total

number of atoms is conserved under the chemical reactions; see Chapter 3 in Erdi/Toth [49].
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In addition to the abbreviation ¢* mentioned above, the following notation will be used

throughout this section: ¢ > 0 is short for ¢ €R"}, and
g(c) :== (g(c1),...,9(cn)) for ¢>> 0 where g : (0,00) = R,

h(c, ) := (h(c1,€1), -, h(cn,Cn)) for ¢>> 0 where h : (0,00)? = R.
So, for example, e = (e, ..., e), ¢/¢ = (c1/C1,...,¢n/Cn) and ¢- T = (¢1C1, . . ., CpCp).

Theorem 8.1 Let o, ; € INf for j =1,...,m be such that {v\,... vy} with v; = B — «
is a linearly independent subset of R". Let kj,k; > 0 and rj(c) = kj(c% — Hjcﬂi) for j =
1,...,m. Then the following holds.

(a) For every cy > 0 there is a unique equilibrium ¢ > 0 of (1) within the stoichiometric
class co + S. If ¢* > 0 is any equilibrium, there is x € S+ such that ¢ = c* - €*.

(b) For every cg > 0 there is a unique solution of (1). This solution is strictly positive and
exists globally.

(¢) Given ¢y > 0, the solution c(-;¢o) of (1) satisfies c(t;co) — T as t — oo, where T is the
equilibrium in the stoichiometric class co + S. In addition, there is n = n(cg) > 0 such
that min¢;(t;¢9) >n on Ry

K

Proof. (a) Notice first that ¢ > 0 is an equilibrium of (1) iff ¢/ = 1/k; forall j=1,...,m

Hence ¢ := €%

is a strictly positive equilibrium if z is a solution of N7z = y with y =
(—Inky,...,—Inky), and such a solution exists due to Im(NT) = (ker(N))* = {0} = R"
Moreover, given an arbitrary stationary solution ¢ > 0, the set of all equilibria is given as

{c-e®:xz € S}, If ¢,¢* are equilibria in the class ¢g + S, then Inc — Inc¢* € S+ implies
c—c" Llnc—Inc* & Z J(In¢; —In¢f) =0,

hence ¢ = ¢*. Consequently, there is at most one equilibrium in every stoichiometric class.

To prove existence within the class ¢y + S, fix any equilibrium ¢ > 0. It suffices to find
x € St such that ¢-e®* —cy € S. Define ¢ : R” — R by é(z) = {(c,e®) — {cp,z). Then
Vo(z) = c-e® — ¢y and ¢"(z) = diag(c;e®) is positive definite, hence ¢ is strictly convex.
Consider the set

C={zeSt:¢(z)<¢0)}

Evidently C is closed convex with 0 € C. To show that C is also bounded, ﬁx r € St
with |z| = 1 and consider ¢(sz) as a function of s € R,. Evidently ¢(sx) Z(pz ) with
wi(s) = ¢;e® — ¢ isz;. Given a,b > 0, it is easy to check that p(r) = ae” — br is strictly
convex with ¢(r) > b(1 —Inb/a) on R. Hence ¢(sz) < ¢(0) = |¢|; implies

0i(s) <|cli + (n — )M with M = max coz/l — In 2|,
k=1,...n Ck
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Choose i € {1,...,n} such that |z;| > 1/n. If z; > 0 then
1455 52
¢i(s) 2 il + si + 58727) — coisti 2 € — |¢ — cols + ¢ig o,
hence sz € C implies
2
¢ —lei —coils +¢ig 5 < e+ (n—1)M
and therefore s < p for some p > 0. In case z; < 0 the same conclusion follows from
©i(s) > coi8/n, thus € C implies |z| < p with some p = p(cg,c) > 0, hence C' is compact.
Consequently, there is x € C such that ¢(z) < ¢(2) for all z € C. This implies (V¢ (z),v) =0
for all v € S+, and therefore Vé(z) =c-e® — ¢y € S+ =S.

(b) To obtain the second assertion observe that the right-hand side in (1) is only defined on
m

R’} where it is locally Lipschitz continuous. We claim that g(c) = Z vjri(c) is quasi-positive.
j=1

To see this, write g;(c) as
gile) = > wvrilc)+ Y wvri(c)
j:Vj,i<0 j:Vj,i>0

and notice that for instance v;; < 0 and ¢; = 0 imply ¢* = 0 since «;; > 0. Hence
vjirj(€) = |vjilkjric” >0

in this case. Consequently R’} is invariant for ¢ = g(c) and therefore (1) has a unique local
solution which stays nonnegative; this follows by Corollary 2.1. Let ¢(-) denote this solution
and let [0,7") be its maximal interval of existence. Due to the above arguments concerning

the structure of g;(c) and the fact that o, 8;; € Ny, it is easy to see that
¢ = —i(t)c; +;(t) on [0,T) with continuous ¢;,1); > 0.

By the variation of constants formula it follows that

¢i(t) = co i exp ( - /0lt @i(s)ds) + /Ot exp ( — /St (pi(T)dT)’(/)i(S)dS >0 on [0,7).

It remains to prove global existence which holds if ¢(-) is bounded on bounded intervals.
For this purpose let € > 0 be the stationary solution of (1) in the class ¢y + S and define
V:(0,00)" = R by

n

Vie) = Zci(lnci —Ing) — (¢; — ). (2)

i=1
Evidently V' is continuously differentiable with 0 < V(¢) — oo if ¢; = oo for some 7. We claim
that V' is a Lyapunov function for (1). Indeed, VV(c) = In(c¢/¢) and therefore

(VV(e)g(e)) = 3 wyiln S pi(e) =3 k;ln f_ (¢ — k).



Due to ¢ = 1/x;, this implies
(VV(c) Zk 0 [(:)”' —1|m (%)”j <0. (3)

Consequently V' (c(t)) < V(ep), hence ¢(+) is bounded on [0,7"). Therefore, the unique solution
¢(+) exists globally and is bounded on R .

(¢) By the preceeding step, all semiorbits are relatively compact. Hence p(c(t), M) — 0 as
t — oo by LaSalle’s invariance principle (see e.g. Theorem 18.3 in Amann [2]), where p(c, M)

denotes the distance from ¢ to the set

M={c"eR} :V(c(;c")) =V(c)}.

(z — 1)

Due to (3) and the fact that (x — 1)Inz > Tl
z

value theorem, we obtain

for all z > 0, which follows by the mean

(4)
Since the solution ¢(-) of (1) is globally bounded, this yields
(VV(c), i i with some w > 0
: k ‘

Thus ¢* € M means rj(c*) =0forall j =1,...,m, i.e. M consists of equilibria. On the other

hand, the solution ¢(+;¢g) of (1) with initial value ¢y stays inside ¢q + S, since
t
Ec(t) = Ec +/ Eg(c(s))ds = Ecy for all t > 0.
0
Consequently
{c":c" = klim c(tg; co) for some t — oo} C M N (co+ S) = {¢},
—00

L . . . 1
hence ¢(t;cy) — € as t — oo. The other assertion in (c) is obvious, since ¢;(t) > = mln C; on

[T, o00) with some T' > 0, and ¢(+) is continuous on [0, 7] with ¢(¢) > 0 by (b). O

[\

8.2 Reactions with macroscopic convection

In analogy to the situation considered in Example 7.1 we suppose that a system of slow and
fast reactions is performed inside a CSTR, but here we assume that the fast reactions are
reversible. We are again interested in the limiting case of instantaneous reactions, hence we

study the family of initial value problems
ko k k k _
" = f(")+ ENAR(c®) on Ry, ¢*(0) =co (5)
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with a (large) parameter k& > 0, and consider the singular limit as & — oco. Here N =
Wi, ...,vh), A = diag(A1,... \y) with Aj € (0,1] and R;(c) = ¢% — kjcP% for j =1,...,m.
This formulation, i.e. with £); instead of k;, takes care of the fact that the ratios k;/k; of
the rate constants have to remain fixed as k; — oc.

To see what are realistic conditions for f, recall that f splitsinto g+h where g refers to feeds
and h corresponds to additional slow reactions. Here g is typically given by g(c) = —(cf —¢)
T

where 7 > 0 is the so-called holding time of the CSTR, and ¢/ € R’} denotes the vector of
feed concentrations. Assuming mass-action kinetics again, the slow reaction term h is given

by

N
h(c) = Z kj(ﬁj — Ozj)(Caj — I{jcﬂj) with k]' > 0, Kj >0,
j=m+1

with x; = 0 if the 4™ reaction is irreversible. While the concrete structure of g and h is not
so important here, it follows that

f R} — R" is locally Lipschitz and quasi-positive; (6)

remember the proof of Theorem 8.1(b) and recall that f is called quasi-positive if ¢; = 0
implies f;(c) > 0, i.e. if f satisfies the subtangential condition with respect to R’}.
Under the natural assumption that the system of slow reactions is conservative there exists

o]
e €R” such that (e,8; — ;) = 0 for all j = m + 1,...,N. Therefore, since g has linear
growth, another reasonable assumption on f is

(e, f(¢)) < a(l+]c[1) on R witha>0and 0 < e € S*. (7)

The following result establishes convergence of the solutions c¢*(-) of (5) to the solution c¢>(-)

of the limiting equation
¢ = (™) = N[R'(¢®)N]T'R'(c®) f(c*) on Ry, ¢™(0) = ¢ (8)
More precisely, we have

Theorem 8.2 Consider the situation described in Theorem 8.1, let co > 0 and f : R}, — R"
satisfy (6) and (7). Then

(a) Initial value problem (5) has a unique global solution c*(-) for every k > 0. This solution
is strictly positive on Ry.

(b) The limiting equation (8) has a unique global solution c¢*(-). This solution is strictly
positive and remains in the manifold M = {c > 0 : R(c) = 0}. If Fs denotes the
right-hand side in (8), then Fx(c) = (I — P(c))f(c) on M, where

P(¢c) = NINTCIN]INTC™! with C =diag(cy, ..., cn)

is the projection onto S along C'S™.
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(c) F(t) = ¢>(t) as k — oo uniformly on compact subsets of (0,00), where the initial value

cg® in (8) is given as the unique positive equilibrium in the stoichiometric class co + S.

Proof. (a) Notice first that the fast reaction part NAR(c) in (5) is quasi-positive by step 2
of the proof of Theorem 8.1. Hence the full right-hand side has this property and is locally
Lipschitz, which implies local existence of a unique nonnegative solution c(-) = c¥(-;cg). Let
[0,T") be its maximal interval of existence and ¢(t) := (e, c(t)) with e from (7). Evidently

n

¢ = (e, f(c)) <a(l+> ¢) <pa(l+¢) on[0,T) with p=max{l,1/e1,...,1/e,},
=1

hence

le()1 < pp(t) < 9(t) = p(1 + (e, co))e”" on [0,T), (9)
and therefore T' = oco. It remains to show ¢(¢) > 0 on [0, 7] for arbitrary 7 > 0. Since the
right-hand side F'(¢) = f(¢) + kNAR(c) in (5) is locally Lipschitz, it is Lipschitz of some
constant Lj; on the compact set {c € R} : |c[; < ¢(7)}. Together with quasi-positivity of F
this yields F(c) > —Lgc for such ¢, hence ¢;(t) > cp; e L** >0 on [0, 7].
Consequently, initial value problem (5) has a unique global solution which stays strictly pos-

itive and satisfies (9) on all of R.

(b) To prove the next part let us first show that the right-hand side F., in (8) is well-defined
on the manifold M. Consider a fixed ¢ € M, ie. ¢ > 0 and ¢ = 1/k; for j =1,...,m.

Then 9R 5
) ain _— Vik
J (c) — J5 Ca‘] _ h:] Js C’BJ — _ Js cOé]’
ey, C C Cr

hence
R'(c) = —DNTC™! for ¢ € M with D = diag(c®',...,c*"), C = diag(cy,...,c,). (10)

Therefore R'(c)N = —DNTC~!N is negative definite, in particular invertible. Since R'(c)N
depends locally Lipschitz continuous on ¢ € M, the inverse also has this property. Hence
F(c) is well-defined and locally Lipschitz continuous on M. Moreover F(c) has the repre-
sentation mentioned in (b), and is tangent to M due to R'(c)F(c) = 0. As a consequence,
the limiting equation (8) has a unique local solution ¢*°(-) by Corollary 2.1. This solution
satisfies [¢*°(t)]1 < (t) on its maximal interval of existence, where 1) is given in (9); notice
that (e, Foo(¢)) < a(l + |c|1) on M with e from (7). Therefore ¢*°(-) exists globally if it stays
strictly positive. Assume, on the contrary, that there is 7' > 0 such that ¢(¢) > 0 on [0,7T)
and lim ¢;(t) = 0 for some 3.
T

We claim that there are &, > 0 such that c(t) = ¢§° - €®¥) with z(t) € K, where

Ks,={z€ Stigi<pfori=1,...,m, (e*,y) > 6 forally € S+ NRY, |yl =1} (11)

If this holds we obviously arrive at a contradiction in case K;, is bounded.
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Of course ¢(t) = ¢§° - €*® is valid with some function z : [0,7) — S by Theorem 8.1(a),
since R(c(t)) =0 on [0,T"). Moreover ¢(t) € [0, M]" with M = ¢(T') by the estimate given in
(9), hence z;(t) < pon [0,T) for i = 1,...,m with some p > 0. Let L be a Lipschitz constant
of f on [0, M]™, and recall that this implies f(c¢) > —Lc on [0, M]™ due to quasi-positivity of
f. Fixy € S* NRY with |y|; = 1. Then

9 e(t). ) = (7(e(t)).4) > ~D{e(t).y) on [0.7),
hence

1
(c(t),y) = (e - "™, y) > ne"" on [0,T) with n = = min 5.
n i ’

This yields (e*®),y) > § with § = ne T/ max co; > 0 and therefore z(t) € K, on [0,T).
It remains to show that Kj, is bounded. If not there is (z¥) C Kj,, such that |z*|; — oo,
and w.l.o.g. 2¥ — —oco if i € T and (2¥) is bounded if i & I with some § # I C {1,...,n}.
We may also assume z* := 2% /|z¥|; — 2. Evidently z € St with |z|; = 1 and z; <0 ifi € I,
z; = 0if 1 € I. Hence y := —z is "admissible” in the definition of K;, which leads to the
contradiction
0<6< (exk,y> = Zyiexf < Zexf — 0.
iel iel

(¢) The following facts will be used frequently below. Let J = [0,T] with T' > 0, ¢(-) be a
solution of (5) for arbitrary £ > 0 and ¢*(¢) denote the unique equilibrium of (1) in the class
c(t) + S. Then there are K, L, M, M*,n > 0, all depending on T' but independent of k& > 0,

such that
0<c(t) <M, 0<n<c(t)<M* onJfori=1,...,n

12
|f(c)loc < K and f is Lipschitz of constant L on [0, M]". (12)
The bounds for ¢*(t) need further explanation, while the other facts are direct consequences
of parts (a) and (b) of this proof. Theorem 8.1(c) yields ¢*(t) = ll)rgo z(1) where (1) =
T
NAR(z(7)) on Ry and z(0) = ¢(t). Fix ¢ > 0 with R(¢) = 0 and let V be given by (2). Now
observe first that h(z) = zIn(z/ZT) — (x — T) with T > 0 has h”(z) = 1/x for z > 0. Hence

h(:v):/;/;%drdszwz

T % forz>%
— — X or r T
2x 2 -

and therefore x < 2(T + h(z)) for all z > 0 which yields
n
el = Zci < 2(|e[y + V(c)) forall c € R'.
i=1

Consequently,
[ (®)1 < 2([eh + V(™ (2)) < 2(Jeh + V(c(?))),

since V' is a Lyapunov function for (1). This yields upper bounds on the ¢ (¢). Having upper
bounds, the same arguments as given below (11) show that ¢*(t) = ¢ - €*(®) with z(t) € Ks,,
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on J, where §,u > 0 are independent of £ > 0. Since Kj;, from (11) is bounded, this also
yields strictly positive lower bounds for the ¢ (¢).
In the subsequent steps we omit the argument ¢ whenever this is reasonable.

(1) Consider V (¢, ¢(c)) where V : (0,00)" x (0,00)" — R is given by

n .
Viee) =3 aln s — (e —c). (13)
i=1 i

and ¢(c) denotes the unique equilibrium in the class ¢+ .S for ¢ > 0; recall that ¢ : (0,00)" —
(0,00)™ is well defined by Theorem 8.1(a), and

p(c) =c* iff R(c*)=0and Ec* = Ec.
We claim that for every T' > 0 there exist wr > 0 and M7 > 0 such that

d m
£V(ck(t), H(cF (1)) < Mp —wr k Z A;R;(c*(t))? on [0,T] for all k > 0, (14)
j=1
where c¥(-) is the solution of (5).
To establish (14), fix £ > 0 and let c(-) = ¢*(-) as well as ¢*(-) = ¢(cF(-)). Evidently ¢*(-)
is differentiable if ¢ has this property. Since ¢ is implicitely defined by F(c,c¢*) = 0 with
F(e,c*) = (R(c*), E(c* — ¢)), differentiability of ¢ follows by the implicit function theorem in

F F
case det((9 —(c, c*)) #0if F(c,¢*) =0. Let z € ker(g ”
c c
R'(¢*)z =0 and Ez = 0, hence Cm—* € S+ by (10) and z € S. Therefore z = 0.

Consequently, to establish (14) we have to obtain appropriate bounds for

(c, c*)) for such ¢, c¢*. This implies

%V(c, ) = <1nci*,f(c)) + k(lnc%,NAR(c)) +(1- cﬁ*,e*) with1=(1,...,1).  (15)

The first term on the right is bounded due to (12) combined with
file)lne; < —Lejlne; < Lje if 0 < ¢ < 1. (16)

To obtain an estimate for the last term, notice that R(c*(¢)) = 0 implies R'(c*)¢* = 0, hence
&/t € St by (10). On the other hand E¢* = Eé = Ef(c), i.e. ¢* — f(c¢) € S and therefore
(¢*/c*,¢* — f(c)) = 0. This yields

k)2 noop)\2
GV oS T ence (6l < /31 £ (0))

By means of (12) it follows that [(1 — ﬁ*, ¢*)| is bounded. Hence there is My > 0 such that
c

d
ZV(e.c') < My + k{ln . NAR(e)),
C
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and then (14) follows by means of (4) and (12); recall that k; in (4) corresponds to kA;.
(ii) Consider W : (0,00)" — R defined by

W(c) = |D(c)"2AY2R(c)|s with D(c) = diag(c®,...,c*™m).

Suppose that ¢f(t) > v > 0 on [0,a] for i = 1,...,n and all kK > 0. We claim that, in this
situation, there are constants K1, Ko,0 > 0 and kg > 0 such that

K
W (ck (1)) < W(co) Kye o + _Ij on [0,a] for all k > ko, (17)

g

where ¢*(-) is the solution of (5). Let ¢(t) = W (c*(t)) on [0,a]. Then (17) is valid if the
differential inequality

¢ < L1 — k(20 — Lap)p a.e. on [0,a] for all k> ko, (18)

with Ly, Ly, o > 0 independent of k, is satisfied. Indeed, (18) implies

t t t
(p(t) < (p(O)e_QUkteXp(kL2/0 (p(T)dT) +L1/0 e_QUk(t—S)eXp(kLQ/ (p(’l')d’l')ds

by Gronwall’s lemma, and

! ! 2 .\ /2 L3 [t 2
kLQ/ o(r)dr < kLot — s(/ (1) dT) <ko(t—s)+ k‘4—/ o(T)“dT.

g

By (12) there is p > 0 such that ¢(7)? = (D(c¥)"'AR(cF), R(c")) < pZ)\jRj(ck)Q, hence
7=1

the integrated version of (14) implies
L3 [t o L3 [t < k)2
kB/S o(r)%dr < pE/S k]z:; NiRj(c"(1))"dr < M,, for0<s<t<a,
with some M, , independent of £ > 0. Consequently

t
(p(t) S @(O)eMa,'ye—O'kt + LleMa,'y / e—O'des’
0

hence (17) is valid with Ky = M, , and Ko = LieMan.
1 1
It remains to establish (18), where we consider ¥(c) = EW(C)Q = E(D(c)*lAR(C),R(c))

to keep the computations shorter. It follows by elementary calculations that

VU(c) = —%C_lATD(c)_lAR(c)Q + R()" D(e)""AR(c)

Qj

1
with C' = diag(cy,...,¢,) and A = (o ); notice that de = ¢% aj— and recall that R(c)?
¢

dcy,
is short for (R1(c)?,..., Rn(c)?). Insertion of ¢ = f(c) + kNAR(c) into (V¥(c),¢) leads to
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four different terms that are estimated below; recall that we only need estimates that are valid
for ¢ € [y, M]™. For the first term we obtain

—5{O M ATD() TAR(, 1)) < |5 D(e) AR JACT (@) < 1 (e),

while for the second one we have

—%(C_lATD(c)_lAR(c)Q,kNAR(c)) < k|%D(c)_1AR(c)2|1 IAC~ NAR(C)| o

< kU()||ACTIND(¢) 2 A2 - |D(e)V2AY2R(€) |00 < 1ok T ()72,

where || || denotes an appropriate matrix norm. To obtain an upper bound for the third term
notice that IR 5 5
. Qi _— vin .
Y (o) = Lok oy Hjﬂcﬂj = ke ﬂRj(C),
ey, Cr Cg C C

1.e.
R'(c) = —=D(c)NTC™' + R(c)BTC™! with R(c) = diag(R1(c), ..., Rn(c), B= (Bjx)-
Hence R'(c) is bounded on [y, M]" and therefore
(R'(c)"D(c) "AR(c), f(e)) = (D(c) *A'?R(c), D(c) V2AYV2R (¢) f(c)) < I3W(c) ">,
Concerning the last term, above formula for R'(c) yields
(R'(¢)TD(c)"'AR(c),ENAR(c)) =

—k(NAR(c),C"*NAR(c)) + E(AR(c)?, D(c) 'BTC 'NAR(c)).
Evidently

(NAR(e), O 'NAR()) > ~-(NTNAR(e), AR(d)) > LAR(),

where p > 0 is the smallest eigenvalue of the positive definite matrix N7 N. Therefore
(NAR(c),C"'NAR(c)) > 0¢¥(c) with some oq > 0,

where og only depends on v, M.

Since the remaining part can be estimated in the same manner as the second term, we obtain
(R'(¢)TD(c)"AR(c), ENAR(c)) < —kooW(c) + L1k (c)®/2.
Altogether these estimates imply

%\I/(C) <L) + 13 T(0) 2 + h(ls + 1) ()2 — koo W(c)
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along the solutions c(-)* of (5). By means of %\Il(ck(t)) = p(t)¢'(t) a.e. and ¢’ =0 a.e. on

{t € [0,a] : ¢(t) = 0} it follows that

Iy — kog
2

with certain Ly, Ly > 0 that are independent of k. Therefore (18) holds with o = 0¢/8 and

ko = 211 /oy, say.

¢ < Ly + kLog? +

¢ a.e on [0,d]

(iii) Let a > 0 and suppose that miin c¥(t) >« on [0,d] for all large k with some v > 0. In

this situation (17) is valid, and we claim that this implies c*(¢) — ¢ (t) as k — oo, uniformly
on compact subsets of (0, a]. Since the solution ¢>(-) of (8) is unique, it suffices to show that,
given any sequence k; — 0o, there is a subsequence of (c*) which converges to ¢, locally
uniformly on (0, a]. Keeping this in mind, we again write ¢* instead of ¢¥ and subsequences
thereof.

By (17) and (12) there exist L1, Ly,0 > 0 (depending on a,~ but independent of k) and
ko > 0 such that

|R(*(t))]2 < L1e " + Ly/k on [0,a] for all k > k. (19)

Hence, given € € (0,a), kR(c*(t)) is bounded on [e, a] uniformly with respect to k& > 0. Ex-
ploitation of the differential equation in (5) shows that (c¥) is relatively compact in C([e, a]; R")
for all € € (0,a). Consideration of ¢ \, 0 together with the usual diagonalization procedure
yields a subsequence of (¢*), again denoted by (c¥), such that c¥() — ¢(t) locally uniformly
on (0,a]. Since (kR(c¥(-))) is weakly relatively compact in L'([0,a];R") by (19), we may also
assume kAR(cF) — ¢ in L'([0,a];R™). Therefore integration of the differential equation for
ck from s to ¢t and k — oo yields

ot) = e(s) + /Stf(c(T))dT + N/:(/)(T)dT for 0< s <t<a,
hence the limit ¢(-) is absolutely continuous and satisfies
= () + Ng(t) ace. on [0,adl.
Evidently ¢(-) also satisfies R(c(t)) = 0 and (t) € [y, M]" on (0,a]. Consequently
0= R'(c(t))e(t) = R'(c(t)[f(c(t)) + Né(t)] a.e. on [0,a],

which implies
$(t) = —[R'(c(t)) N R'(c(t) f(c(t)) a.e. on [0,a];
recall from step (b) that R'(c)N is invertible on {¢ > 0 : R(c) = 0}. Hence ¢(+) is a solution
of the differential equation in (8) and the limit ¢(0+) = tlir(gr c(t) exists since the right-hand
side F(c) is bounded on [y, M]™ N M. Moreover
Be(t) = Jim Bt (1) = Bey + Jim /0 "B (s))ds on (0,d]

k—o00
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implies |Ec(t) — Ecy| < ||E||Kt, hence Ec(0+) = Ecy. Evidently R(c(0+)) = 0 and therefore
c(0+) is the unique equilibrium in the class co + S, i.e. ¢(0+) = ¢§°. This means ¢(t) = ¢ (t)
on [0, a], hence the claim is proved.

(iv) To finish the proof of (c) let us first show that ¢ converges to ¢, locally uniformly
on some small interval (0,a]. This holds by the previous step if there are a,y > 0 such that
miin cF(t) > on [0, a] for all large k > 0. Let z(-) be the solution of

2= NAR(z) on Ry, 2(0) = c.

By Theorem 8.1(c) there is 7 > 0 such that z;(t) > 2n on R4 for all 4, and z(t) — ¢ as t — oo,

where € is the equilibrium in the class ¢g + S (i.e. ¢ = ¢f°). Let V denote the Lyapunov
1

function from (2), and § := 1 mlinEl. Then V(z(t)) \, 0 as t — oo implies V(2(T)) < ¢ for

some T > 0. Consider z¥(t) = ¢*(t/k) on [0, T] and notice that z* is the solution of

sk = %f(zk) + NAR(ZF) on [0,T], 2F(0) = co.

Due to the continuous dependence of z(-) on the right-hand side it follows that z*¥ — z in
C([0,T); R™), hence min z¥(¢) > n on [0,T] and V (2*(T)) < 26 for all large k. This means
(2

mincf(t) > 7 >0on [0,7/k] and V(cF(T/k)) < 2§ for all large k.

Since V(c) has V(c) = (In(¢/c), f(c)), the uniform bounds given in (12) together with (16)
imply %V(ck(t)) < M on [0,1], say, for all k& > 0 with some M; > 0. Hence there is a > 0
such that V(c¥(t)) < 30 on [T/k,a] for all k > kg. Therefore ¢ := c¥(t) with & > k¢ and
t € [T/k, a] satisfies

glng—l-lg ? fori=1,...,n,

G G Gi
which implies ¢¥(t) > p&; on [T/k,a] where p > 0 is the smallest solution of rInr + 1/4 = r.
Hence

miincf(t) > 7 :=min{4dp,n} > 0 on [0,a] for k > k.
Consequently,
T := sup{a > 0 : ¢F(t) = ¢*°(t) locally uniformly on (0,a]} > 0
by step (iii), and it remains to show T = oo. Assume that T' < oo and let
5= imin{cg’o(t) te[0,T]i=1,...,n} > 0.
Since the estimates of type (12) are valid for the fixed interval [0, T + 1], there is My > 0 such
that

c*(t)

(In (@) < My on [0,T +1] for all k > 0 and all ¢ € [5, M]".
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)
Let 0 < a < min{w, 1,T}. Evidently f(T — a) — ¢ := ¢®(T — a) € [§, M]". Consider V/
2
from (2) with this particular €. Then

d
%V(ck(t)) <M, on[0,T+1] and V(F(T —a)) <§ forall k> ko,

hence V(c¥(t)) < 20 on [T —a, T+a] for all k > kg. Therefore, by a repetition of the arguments
given above, there is 4 > 0 such that minc?(¢) > v on [0,T + a] for all large k. This implies
(3

F(t) — ¢®(t) locally uniformly on (0,T + a] by step (iii), a contradiction. Hence T' = oo
which ends the proof. O

8.3 Reactions of diffusive species

In this final section we consider a single reversible reaction A+ B = P between mobile species
inside an isolated vessel, which leads to the following reaction diffusion system where u, v and

w denote the concentrations of A, B and P, respectively.

up = diAu — k(uv — Kw) in (0,00) x 2
vy = doAv — k(uv — Kw) in (0,00) x §2
wy = dgAw + k(uv — kw) in (0,00) x 2
ou Ov Ow

5_5_%_0 on (0,00) x I'

u(0,-) = ug, v(0,-) =vp, w(0,:) =wo in

with diffusion coefficients dj > 0, rate constant £ > 0 and x > 0, where we also assume that
Q C R" is open bounded with smooth boundary T'.

It is known that this system has a unique classical solution if the initial values belong to
L*(2; R ); see Morgan [86] and remember Remark 6.3. Here (u, v, w) is said to be a classical
solution on [0, T] if u,v,w € C¥2((0,T) x Q) NC((0,T) x Q) with uy,, vy, ws; € C((0,T) x Q)
such that the differential equation holds in (0,7") x €2, the boundary condition is valid on
(0,T) x I, and the initial value is attained in LP(Q) (e.g. |u(t,-) — ugl, — 0 as ¢ — 0+) for
every p > 1.

As before we are interested in the limiting case £ — oo of an instantaneous reaction. Our
subsequent result is only a starting point, since we have to assume equal diffusion coefficients

so far. In this case we may assume d; = 1 for £k = 1,2, 3, hence we consider the system
dc dc

pri Ac — kvr(e) in (0,00), e 0 on (0,00) xT', ¢(0,:) =¢yp in Q (20)

for ¢ = (u,v,w) with v = (=1,—1,1)T (notice that here v is used with a different meaning,
but a confusion with the outer normal is not possible) and r(¢) = uv — kw. Let us note in

passing that in this case and for initial value in L°°(€2;R?}) the set

K = {(u,v,w) € L®(%URY) : u+w < |ugle + [Woloo, v+ w < [v0]oc + [wo|o a.e. in Q}
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is positively invariant for (20), hence global existence of (mild) solutions for (20) in LP({2)
(for every p > 1) follows immediately, and this mild solution is in fact a classical solution
in the sense described above, which follows by standard techniques for semilinear evolution
equations with analytic semigroup.

A formal application of Theorem 8.2 (with f(c) = Ac) suggests that the limiting problem

is given by
dc . Oc .
pri (I — P(c))Ac in (0,00), - 0 on (0,00) xI', ¢(0,-) =¢y° in €, (21)
v

where the projections P(c) are given as

P(c)_y®r'(c)_ 1 Z Z ::
{v,r'(e)) utvtk ’

- —u K
and the initial value ¢® = (ud°, v5°, wi®) is determind by

ug” +wy” = ug + wo, Vo +wgo = v+ wg, UG vy = KWy . (22)
The following result validates this expectation.

Theorem 8.3 Let Q C R" be open bounded with smooth boundary T'. Let ¢y = (ug, v, wo) €

LOO(Q;]E{i) and let c*(-) denote the classical solution of (20) for k > 0 on J = [0,T] with
arbitrary T' > 0. Then

= e in WOLT,LYQ) N LY, W25(Q)) ask — oo fori=1,2,3 and all s < 1,

where ¢ is the unique classical solution of (21) on J with initial value given by (22).

Proof. Let us first show that (kr(c¥))rso is bounded in L'(Qr) with Qr = (0,T) x €. For
this purpose let R(c) = [ |uv —kw|dz for ¢ = (u,v,w) € L?(;R?) and consider the classical
Q

solution c(+) = ¢*(-) of (20) for fixed k > 0. Then R(c(+)) is absolutely continuous with
—R(c) = / (uv — Kw)y sgn (uv — Kw) dx
Q

= —k'/ (u+ v+ K)|uv — kw| dz + / (vAu + uAv — kAw) sgn (uv — kw) dz a.e. on J.
Q Q

Since A(uv — kw) = vAu+ulAv — kAw +2(Vu, Vv) and —A is s-accretive in L (), it follows
that

d
ER(C) < 2|Vul9|Vvls — kEkR(c) a.e. on J,

hence
k Tk k)2 k|2
[kr(c®)|L1(@r) :/0 ER(c*(t)) dt < |r(co)|pi(q) + [Vu'li2g, + VO |20,
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To establish appropriate bounds for the gradients, let v*, v*, w* € (0, 00) be such that v*v* =
kw*, i.e. (u*,v*,w*) is a positive equilibrium of the ordinary differential equation associated

with (20). Consider
Vie) = /Q (¢1(u) + ¢pa(v) + ¢3(w)) dz for ¢ = (u,v,w) € LQ(Q;]Ri_),

where ¢(s) = In(s/s*) — (s — s*) for s = u,v,w; compare (2) in §8.1 above, and notice
that u(t, z),v(t, z),w(t,z) > 0 on (0,T] x Q since for instance u; > Au — kLu in Qr with
L = |ug|oo + |wo|oo and ug(z) > 0 a.e. in Q. Then

d

U v w
EV(C) :/Q(utlnﬁ—i—vtlnv—* —i—wtlnﬁ) dx

= _/Q (|V;|2 + |VQ')U|2 + |V;U|2) dr — k/Q(UU — Iﬂl))(ln(uv) — ln(h;w)) dz.

Consequently

2 2 2
/ ('VU| AT AT )dmdt < V(o)
or \ U v w

and therefore (Vu*)pso, (Vo¥)rs0, (Vw*)iso are bounded in L?(Qr) since uf,v¥, w* are
bounded by max{|ug|sc + |wo|oo, [V0|ec + |w0|oo }-

Hence |kr(ck)|L1(QT) < M with some M = M(cy) > 0 for all k£ > 0, i.e. the inhomogenity in
(20) is bounded in L'(Q7;R?) uniformly with respect to k& > 0. In this situation it follows
from standard regularity results for inhomogeneous linear evolution equations with analytic

semigroups that
(uF) k>0, (V%) k0, (W0 are bounded in W*(J; L(Q)) N LY(J; W21(Q)) for all s < 1.

Hence the components of (cF);~¢ are also relatively compact in the same space due to compact
embedding of W5l in W5l for s < . Consequently, given any sequence k; — 0o, there is a
subsequence (c®i1) of (c¥), denoted by (c¥t) for simplicity, such that

U ¢ in WO, LY Q) N LY (J; W2$1(Q)) asl— oo fori=1,2,3 and s < 1.

) 7

To finish the proof it suffices to show that ¢* is uniquely determined as the classical solution
of (21) with u§° from (22); notice that the whole sequence converges to ¢* then. For this
purpose let y! = uft + wk and 2! = v¥ + wk. Evidently 3 and 2! are independent of I and

given as y' =y, 2! = z where y, z are the classical solutions of

yr =Ay in (0,7) x Q, dyy=0 on (0,7) xT', y(0,) =ug+wy in Q

23
zz=Az in (0,T) xQ, dyz=0 on (0,7) xT', 2(0,:) =vo+wo in Q. (23)

Since r(c*) — 0 in L'(Q7) it follows that ¢® = (u™,v>®, w™) satisfies
u® +w*C =y, v°+w* =2z uFv™® =Kw™® and v,V W >0 ae in Qr. (24)
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Now a straight forward computation shows that the system of equations above has a unique

oo 00

nonnegative solution (4>, v, w™)

which is given by

u>™ = ¢(y,z) +y, v = ¢(yaz) +z, w* = _¢(yaz)

25
with 6(s,2) = 9(z9) = (K + 26l +2) + (y — 2)°)"/* (25)

o0

Due to this explicit representation it follows that u®°, v*° and w® have the regularity

properites required for classical solutions. Furthermore
u® + wi® = Au™ + Aw™, v° + w® = Av™ + Aw™, ufv™ + uv° = Kw®,

and then a simple calculation shows that ¢ = (4>, v, w
differential equation in (21). Due to (23), (24) and (25) it is also clear that (ul°, v{°®, w§®) =

tlir(ﬁ_ c™(t) exists in LP(Q2) for p > 1 and is characterized by (22). Hence ¢ is a classical
%

solution of (21), (22) on J.

Finally, let ¢ = (u,v,w) be any classical solution of (21) on J with initial value ¢§° from

) is a classical solution of the

(22). A simple computation yields (uv); = kwy in Qp, hence also uv = kw in Qp. Moreover,
y=u+w and z = v + w are classical solutions of (23), hence ¢ is uniquely determined by
(24), i.e. ¢ =c™. O

The convergence in Theorem 8.3 is optimal in the sense that s = 1 is not admissible for initial
values with ugvy # kwp; observe that convergence with s = 1 would imply convergence in
C(J; LY(Q)), but a jump at ¢ = 0 develops as k — oc.

8.4 Remarks

Remark 8.1 Parts (a) and (c) of Theorem 8.1 are essentially contained in Horn/Jackson
[70]. The proof of part (a) above is based on arguments from Feinberg [52], where existence
of a unique equilibrium in each stoichiometric class is obtained for considerably more general
systems of chemical reactions with mass-action kinetics. The argument given here to obtain

strict positivity of solutions is taken from Vol'pert [109].

Remark 8.2 In Chapter 12.5 of Vol’'pert/Hudjaev [110] the authors study the instantaneous
reaction limit for systems of chemical reactions composed of slow and fast reactions under the
assumption of mass-action kinetics but without macroscopic convection. This leads to initial
value problems of type (5) with f having a special structure since it corresponds solely to
additional slow reactions. In this setting convergence of solutions as k — oo to the solution
of a certain limiting problem is claimed in Theorem 12.5.1. There the basic idea is to rewrite
the system (5) in terms of slow and fast variables and to apply classical singular perturbation
theory, in particular Tihonov’s theorem. Translated to our notation this means to apply the

transformation u = Fc, v = NT¢, and to rewrite (5) in terms of u and v. If ¢ denotes the
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inverse transformation, this leads to

o = Ef(¢(u,v)) on Ry, u(0) = Eco
. (26)
ev = eNTf(p(u,v)) + NCNAR(p(u,v)) on Ry, v(0)=NTcq
with € = 1/k. Then the limit problem is given by
o = Ef(¢(u,v)) onRy, u(0)=Ec (27)
0 = R(¢(u,v)).

The result mentioned above states that (27) has a unique local solution (u°,v°) on some
interval (0,7) and that the solutions (u,v¢) converge to (u®,v°) as € — 0+, uniformly on
compact subsets of (0,7'). Unfortunately, a rigorous proof is not given. In particular, the
Theorem of Tihonov, at least in the version given in [110], does not cover this situation
since € also appears on the right-hand side in (26). Furthermore, observe that (27) is an
implicit formulation of the limit problem and requires knowledge of a complete set of conserved
quantities, while the explicit formulation by means of (8) only involves the stoichiometric
coefficients.

Let us also note that the direct proof of Theorem 8.2 given here yields a thorough under-
standing of the particular features of the system (5), which is indispensable for extensions to
reaction-diffusion systems.

Some references to related papers in the engineering literature can be found in Erdi/Toth
[49] and in Segel/Slemrod [102].
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