Scale-bridging within a complex model hierarchy for investigation of a metal-fueled circular energy economy by use of Bayesian model calibration with model error quantification. Gossel, L.; Corbean, E.; Dübal, S.; Brand, P.; Fricke, M.; Nicolai, H.; Hasse, C.; Hartl, S.; Ulbrich, S.; Bothe, D. (preprint).
https://arxiv.org/abs/2404.13092
A two-field formulation for surfactant transport within the algebraic Volume of Fluid method. Antritter, T.; Josyulaa, T.; Marić, Tomislav; Bothe, Dieter; Hachmann, P.; Buck, B.; Gambaryan-Roismana, T.; Stephan, Peter (preprint).
https://arxiv.org/abs/2311.08591
Mathematical analysis of modified level-set equations. Bothe, Dieter; Fricke, Mathis; Soga, Kohei (preprint).
https://arxiv.org/abs/2310.05111
A pragmatic workflow for research software engineering in computational science. Marić, Tomislav; Gläser, D.; Lehr, J.-P.; Papagiannidis, I., Lambie, Benjamin; Bischof, Christoph (preprint).
https://arxiv.org/abs/2310.00960
Enhanced Modeling of Back-Mixing in Chemical Reactor Networks. Gossel, L.; Fricke, M.; Bothe, D. (preprint).
https://arxiv.org/abs/2305.11591
Analysis of a bulk-surface reaction-sorption-diffusion system with Langmuir-type adsorption. Augner, Björn; Bothe, Dieter (preprint)
https://arxiv.org/2303.08479
Numerical wetting benchmarks--advancing the plicRDF-isoAdvector unstructured Volume-of-Fluid (VOF) method. Asghar, M. Hassan; Fricke, Mathis; Bothe, Dieter; Marić, Tomislav (preprint).
https://arxiv.org/pdf/2302.02629
A locally signed-distance preserving level set method (SDPLS) for moving interfaces. Fricke, Mathis; Marić, Tomislav; Vučković, Aleksandar & Bothe, Dieter (preprint).
https://arxiv.org/pdf/2208.01269
Efficient three-material PLIC interface positioning for enhanced performance of the three-phase VoF Method. Kromer, Johannes; Potyka, Johanna; Schulte, Kathrin & Bothe, Dieter (2023), Computers & Fluids 266, 106051.
https://doi.org/10.1016/j.compfluid.2023.106051
An analytical study of capillary rise dynamics: Critical conditions and hidden oscillations. Fricke, Mathis; Ouro-Koura, El Assad; Raju, Suraj; von Klitzing, Regine; Joel De Coninck; Bothe, Dieter (2023), Physica D: Nonlinear Phenomena 455, 133895.
https://doi.org/10.1016/j.physd.2023.133895
A collocated unstructured finite volume Level Set / Front Tracking method for two-phase flows with large density-ratios. Liu, Jun; Tolle, Tobias; Bothe, Dieter & Marić, Tomislav (2023), J. Comp. Phys. 493, 112426.
https://doi.org/10.1016/j.jcp.2023.112426
Asymmetry during fast stretching of a liquid bridge. Asghar, Muhammad Hassan; Brockmann, Ph.; Dong, Xulan; Niethammer, Matthias; Marić, Tomislav; Roisman, Ilia; Bothe, Dieter (2023), Chemical Engineering & Technology 35, 1800-1807.
https://doi.org/10.1002/ceat.202300240
Second-order accurate normal reconstruction from volume fractions on unstructured meshes with arbitrary polyhedral cells. Kromer, Johannes; Leotta, Fabio & Bothe, Dieter (2023), J. Comp. Phys. 491, 112363.
https://doi.org/10.1016/j.jcp.2023.112363
The stressful way of droplets along single-fiber strands: A computational analysis. Bodziony, Francisco; Wörner, Martin; Marschall, Holger (2023). Physics of Fluids 35 (1).
https://doi.org/10.1063/5.0131032
On the structure of continuum thermodynamical diffusion fluxes -- A novel closure scheme and its relation to the Maxwell-Stefan and the Fick-Onsager approach. Bothe, Dieter & Druet, Pierre-Etienne (2023), Int. Journal of Engineering Science 184, 103818.
https://doi.org/10.1016/j.ijengsci.2023.103818
Multicomponent incompressible fluids – an asymptotic study. Bothe, Dieter; Dreyer, Wolfgang; Druet, Pierre-Etienne (2023). ZAMM 103 (7):e202100174.
https://doi.org/10.1002/zamm.202100174
Third-order accurate initialization of VOF volume fractions on unstructured meshes with arbitrary polyhedral cells. Kromer, Johannes & Bothe, Dieter (2023), J. Comp. Phys. 475, 111840.
https://doi.org/10.1016/j.jcp.2022.111840
An unstructured Finite-Volume Level Set / Front Tracking method for capillary flows. Tolle, Tobias (2023). Technische Universität Darmstadt, Dissertation.
https://doi.org/10.26083/tuprints-00023366
Towards a unified multiphysics framework applied to reactive bubbly flows. Habes, Constantin (2023). Technische Universität Darmstadt, Masterarbeit.
https://doi.org/10.26083/tuprints-00023030
Zur mathematischen Modellierung des kapillaren Anstiegs – Dissipative Mechanismen und nicht-lineare Oszillationen. Ouro-Koura, El Assad (2023). Technische Universität Darmstadt, Bachelorarbeit.
https://doi.org/10.26083/tuprints-00024476
Computing hydrodynamic eigenmodes of channel flow with slip – A highly accurate algorithm. Raju, Suraj; Gründing, Dirk; Maric, Tomislav; Bothe, Dieter & Fricke, Mathis (2022), The Canadian Journal of Chemical Engineering 100 (12), 3531-3547.
https://doi.org/10.1002/cjce.24598
Computation of interfacial flows using Continuous Surface Stress method with adaptive mesh refinement in a Quad/Octree grid structure. Liu, Muyuan; Bothe, Dieter; Yang, Yiren & Chen, Hao (2022), Computers & Fluids 245, 105610.
https://doi.org/10.1016/j.compfluid.2022.105610
On the molecular mechanism behind the bubble rise velocity jump discontinuity in viscoelastic liquids. Bothe, Dieter; Niethammer, Matthias; Pilz, Christian & Brenn, Günter (2022), J. Non-Newtonian Fluid Mech. 302, 104748.
https://doi.org/10.1109/ojuffc.2022.3141333
Multipath Flow Metering of High-Velocity Gas using Ultrasonic Phased-Arrays. Haugwitz, Christoph; Hartmann, Claas; Allevato, Gianni; Rutsch, Matthias; Hinrichs, Jan; Brötz, Johannes; Bothe, Dieter; Pelz, Peter F. & Kupnik, Mario (2022), IEEE Open Journal of Ultrasonics, Ferroelectrics, and Frequency Control 2, 30-39.
https://doi.org/10.1109/ojuffc.2022.3141333
triSurfaceImmersion: Computing volume fractions and signed distances from triangulated surfaces immersed in unstructured meshes. Tolle, Tobias; Gründing, Dirk; Bothe, Dieter & Maric, Tomislav (2022), Computer Physics Communications 273, 108249.
https://doi.org/10.1016/j.cpc.2021.108249
Preface to the computational fluid dynamics for chemical and process engineering special issue section. Marschall, Holger (2022). The Canadian Journal of Chemical Engineering 100 (12).
https://doi.org/10.1002/cjce.24618
Sharp-Interface Continuum Thermodynamics of multicomponent fluid systems with interfacial mass. Bothe, Dieter (2022), Int. Journal of Engineering Science 179, 103731.
https://doi.org/10.1016/j.ijengsci.2022.103731
Face-based Volume-of-Fluid interface positioning in arbitrary polyhedra. Kromer, Johannes & Bothe, Dieter (2022), J. Comp. Phys. 449, 110776.
https://doi.org/10.1016/j.jcp.2021.110776
A unified finite volume framework for phase-field simulations of an arbitrary number of fluid phases. Bagheri, Milad; Stumpf, Bastian; Roisman, Ilia V.; Dadvand, Abdolrahman; Wörner, Martin; Marschall, Holger (2022). The Canadian Journal of Chemical Engineering 100 (9).
https://doi.org/10.1002/cjce.24510
Interfacial relaxation – Crucial for phase-field methods to capture low to high energy drop-film impacts. Bagheri, Milad; Stumpf, Bastian; Roisman, Ilia V.; Tropea, Cameron; Hussong, Jeanette; Wörner, Martin; Marschall, Holger (2022). International Journal of Heat and Fluid Flow 94.
https://doi.org/10.1016/j.ijheatfluidflow.2022.108943
Bubble Cutting by Cylinder – Elimination of Wettability Effects by a Separating Liquid Film. Wang, Shuo; Rohlfs, Patrick; Börnhorst, Marion; Schillaci, Andrea; Marschall, Holger; Deutschmann, Olaf; Wörner, Martin (2022). Chemie Ingenieur Technik 94 (3).
https://doi.org/10.1002/cite.202100145
Multicomponent incompressible fluids – an asymptotic study. Bothe, Dieter; Dreyer, Wolfgang & Druet, Pierre-Etienne (2021), ZAMM e202100174, WIAS Preprint 2825.
https://doi.org/10.1002/zamm.202100174
Bouncing drop impingement on heated hydrophobic surfaces. Samkhaniani, Nima; Stoh, A.; Holzinger, M.; Marschall, Holger; Frohnapfel, Bettina, Wörner, Martin (2021). International Journal of Heat and Mass Transfer 180.
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121777
Spreading and rebound dynamics of sub-millimetre urea-water-solution droplets impinging on substrates of varying wettability. Wörner, Martin; Samkhaniani, Nima; Cai, Xuan; Wu, Yanchen; Majumdar, Arijit, Marschall, Holger; Frohnapfel, Bettina; Deutschmann, Olaf (2021). Applied Mathematical Modelling 95.
https://doi.org/10.1016/j.apm.2021.01.038
Advected phase-field method for bounded solution of the Cahn–Hilliard Navier-Stokes equations. Dadvand, Abdolrahman; Bagheri, Milad; Samkhaniani, Nima; Marschall, Holger; Wörner, Martin (2021). Physics of Fluids 33 (5).
https://doi.org/10.1063/5.0048614
Analysis of some heterogeneous catalysis models with fast sorption and fast surface chemistry. Augner, Björn & Bothe, Dieter (2021), J. Evol. Eqs. 21, 3521-3552.
https://doi.org/10.1007/s00028-021-00692-4
Well-posedness analysis of multicomponent incompressible flow models. Bothe, Dieter & Druet, Pierre-Etienne (2021), J. Evol. Eqs. 21, 4039-4093, WIAS Preprint 2720.
https://arxiv.org/pdf/2005.12052.
Mass transport in multicomponent compressible fluids: Local and global well-posedness in classes of strong solutions for general class-one models. Bothe, Dieter & Druet, Pierre-Etienne (2021), Nonlinear Analysis: Theory, Methods & Applications 210, 112389, WIAS Prepring 2658.
https://arxiv.org/pdf/2001.08970
Small-scale phenomena in reactive bubbly flows: experiments, numerical modeling, and applications. Schlüter, Michael; Herres-Pawlis, Sonja; Nieken, Ulrich; Tuttlies, Ute & Bothe, Dieter (2021), Annual Review of Chemical and Biomolecular Engineering 12, 625-643. https://doi.org/10.1146/annurev-chembioeng-092220-100517
Breakup dynamics of capillary bridges on hypophobic stripes. Hartmann, Maximilian; Fricke, Mathis; Weimar, Lukas; Gründing, Dirk; Maric, Tomislav; Bothe, Dieter & Hardt, Steffen (2021), Int. J. Multiphase Flow 138.
https://doi.org/10.1016/j.ijmultiphaseflow.2021.103582
Computing Mass Transfer at Deformable Bubbles for High Schmidt Numbers. Weiner, Andre; Gründing, Dirk & Bothe, Dieter (2021), Chemie Ingenieur Technik.
https://doi.org/10.1002/cite.202000214
Changes of meniscus shapes and capillary rise heights under hypergravity. Fickel, Beatrice; Postulka, Niels; Hartmann, Maximilian; Gründing, Dirk M.; Nau, Maximilian; Meckel, Tobias; Biesalski, Markus (2021). Colloids and Surfaces A: Physicochemical and Engineering Aspects 610.
https://doi.org/10.1016/j.colsurfa.2020.125688
The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model. Augner, Björn & Bothe, Dieter (2021), Discrete Continuous Dynamical Systems – Series S 14 (2), 533-574.
https://doi.org/10.3934/dcdss.2020406
Numerical simulation of non-isothermal viscoelastic flows at high Weissenberg numbers using a finite volume method on general unstructured meshes. Meburger, Stefanie; Niethammer, Matthias; Bothe, Dieter & Schäfer, Michael (2021), Journal of Non-Newtonian Fluid Mechanics, 287, 104451. https://oi.org/10.1016/j.jnnfm.2020.104451
Mathematical modeling and Volume-of-Fluid based simulation of dynamic wetting. Fricke, Mathis (2021). Technische Universität Darmstadt, Dissertation.
https://doi.org/10.12921/tuprints-00014274
On moving hypersurfaces and the discontinuous ODE-system associated with two-phase flows. Bothe, Dieter (2020), Nonlinearity, 33 (10), 5425–56.
https://doi.org/10.1088/1361-6544/ab987d
Reflections on the article “Moving contact lines and dynamic contact angles: a ‘litmus test’ for mathematical models and some new challenges” by Yulii D. Shikhmurzaev. Bothe, Dieter (2020), The European Physical Journal Special Topics, 229 (10), 1979–87.
https://doi.org/10.1140/epjst/e2020-000149-6
Boundary conditions for dynamic wetting – A mathematical analysis. Fricke, Mathis & Bothe, Dieter (2020), The European Physical Journal Special Topics, 229 (10), 1849–65.
https://doi.org/10.1140/epjst/e2020-900249-7
Contact line advection using the geometrical Volume-of-Fluid method. Fricke, Mathis; Marić, Tomislav & Bothe, Dieter (2020), Journal of Computational Physics, 407, 109221.
https://doi.org/10.1016/j.jcp.2019.109221
Computing Mass Transfer at Deformable Bubbles for High Schmidt Numbers. Weiner, Andre; Gründing, Dirk; Bothe, Dieter (2020). Chemie Ingenieur Technik.
https://doi.org/10.1002/cite.202000214
Uniform Exponential Stabilisation of Serially Connected Inhomogeneous Euler-Bernoulli Beams. Augner, Björn (2020). ESAIM: Control, Optimisation and Calculus of Variations 26.
https://doi.org/10.1051/cocv/2020036
Exponential stability for infinite-dimensional non-autonomous port-Hamiltonian Systems. Augner, Björn; Laasri, Hafida (2020). Systems and Controll Letters 144.
https://doi.org/10.1016/j.sysconle.2020.104757
A comparative study of transient capillary rise using direct numerical simulations. Gründing, D.; Smuda, M.; Antritter, T.; Fricke, M.; Rettenmaier, D.; Kummer, F.; Stephan, P.; Marschall, H. & Bothe, D. (2020), Applied Mathematical Modelling, 86, 142–65.
https://doi.org/10.1016/j.apm.2020.04.020
Mass transfer from single carbon-dioxide bubbles in surfactant-electrolyte mixed aqueous solutions in vertical pipes. Hori, Yohei; Bothe, Dieter; Hayashi, Kosuke; Hosokawa, Shigeo & Tomiyama, Akio (2020), International Journal of Multiphase Flow, 124, 103207.
https://doi.org/10.1016/j.ijmultiphaseflow.2020.103207
Unstructured un-split geometrical Volume-of-Fluid methods – A review. Marić, Tomislav; Kothe, Douglas B. & Bothe, Dieter (2020), Journal of Computational Physics, 420, 109695.
https://doi.org/10.1016/j.jcp.2020.109695
SAAMPLE: A Segregated Accuracy-driven Algorithm for Multiphase Pressure-Linked Equations. Tolle, Tobias; Bothe, Dieter & Marić, Tomislav (2020), Computers & Fluids, 200, 104450.
https://doi.org/10.1016/j.compfluid.2020.104450
Combined Two-phase Co-flow and Counter-flow in a Gas Channel/Porous Transport Layer Assembly. Beale, Steven B.; Andersson, Martin; Weber, Norbert; Marschall, Holger; Lehnert, Werner (2020). ECS Transactions 98 (9).
https://doi.org/10.1149/09809.0305ecst
Breakup Dynamics of Capillary Bridges on Hydrophobic Stripes. Hartmann, Maximilian; Fricke, Mathis; Weimar, Lukas; Gründing, Dirk; Marić, Tomislav; Bothe, Dieter & Hardt, Steffen (04.10.2019).
https://arxiv.org/pdf/1910.01887
A kinematic evolution equation for the dynamic contact angle and some consequences. Fricke, Mathis; Köhne, Matthias & Bothe, Dieter (2019), Physica D: Nonlinear Phenomena, 394, 26–43.
https://doi.org/10.1016/j.physd.2019.01.008
Contact line advection using the Level Set method. Fricke, Mathis; Maric, Tomislav; Bothe, Dieter (2019). Proceedings in Applied Mathematics and Mechanics (PAMM) 19 (1).
https://doi.org/10.1002/pamm.201900476
Capillary Rise ‐ Jurin's Height vs Spherical Cap. Gründing, Dirk; Fricke, Mathis; Bothe, Dieter (2019). Proceedings in Applied Mathematics and Mechanics (PAMM) 19 (1).
https://doi.org/10.1002/pamm.201900336
Highly accurate computation of volume fractions using differential geometry. Kromer, Johannes & Bothe, Dieter (2019), Journal of Computational Physics, 396, 761–84.
https://doi.org/10.1016/j.jcp.2019.07.005
On suitability of phase-field and algebraic volume-of-fluid OpenFOAM® solvers for gas–liquid microfluidic applications. Jamshidi, F.; Heimel, H.; Hasert, M.; Cai, X.; Deutschmann, O.; Marschall, Holger; Wörner, Martin (2019). Computer Physics Communications 236.
https://doi.org/10.1016/j.cpc.2018.10.015
Quantifizierung der Trenneffizienz einer strukturierten Packung mittels numerischer Simulation. Hill, Simon; Acher, Thomas; Hoffmann, Rainer; Ferstl, Johann; Deising, Daniel; Marschall, Holger; Rehfeldt, Sebastian; Klein, Harald (2019). Chemie Ingenieur Technik
https://doi.org/10.1002/cite.201900041
Modelling and Numerical Simulation of Species Transfer in Bubbly Flows using OpenFOAM. Deising, Daniel (2019). Technische Universität Darmstadt, Dissertation.
Toward the predictive simulation of bouncing versus coalescence in binary droplet collisions. Liu, M. & Bothe, D. (2019), Acta Mechanica, 230 (2), 623–44. https://doi.org/10.1007/s00707-018-2290-4
An extended volume of fluid method and its application to single bubbles rising in a viscoelastic liquid. Niethammer, Matthias; Brenn, Günter; Marschall, Holger & Bothe, Dieter (2019), Journal of Computational Physics, 387, 326–55.
https://doi.org/10.1016/j.jcp.2019.02.021
Avoiding Starvation in Tribocontact Through Active Lubricant Transport in Laser Textured Surfaces. Stark, Tobias; Kiedrowski, Thomas; Marschall, Holger; Lasagni, Andrés Fabián (2019). Lubricants 7 (6).
https://doi.org/10.3390/lubricants7060054
Well-Posedness and Stability of Infinite-Dimensional Linear Port-Hamiltonian Systems with Nonlinear Boundary Feedback. Augner, Björn (2019). SIAM Journal on Control and Optimization 57 (3).
https://doi.org/10.1137/15M1024901
A finite volume framework for viscoelastic flows at high Weissenberg Number. Niethammer, Matthias (2019). Technische Universität Darmstadt, Dissertation.
Robust Direct Numerical Simulation of Viscoelastic Flows. Niethammer, Matthias; Marschall, Holger & Bothe, Dieter (2019), Chemie Ingenieur Technik, 91 (4), 522–28.
https://doi.org/10.1002/cite.201800108
Load balanced 2D and 3D adaptive mesh refinement in OpenFOAM. Rettenmaier, Daniel; Deising, Daniel; Ouedraogo, Yun; Gjonaj, Erion; Gersem, Herbert de; Bothe, Dieter; Tropea, Cameron & Marschall, Holger (2019), SoftwareX, 10, 100317.
https://doi.org/10.1016/j.softx.2019.100317
A continuum model of heterogeneous catalysis: Thermodynamic framework for multicomponent bulk and surface phenomena coupled by sorption. Souček, Ondřej; Orava, Vít; Málek, Josef & Bothe, Dieter (2019), International Journal of Engineering Science, 138, 82–117.
https://doi.org/10.1016/j.ijengsci.2019.01.001
Data‐Driven Subgrid‐Scale Modeling for Convection‐Dominated Concentration Boundary Layers. Weiner, Andre; Hillenbrand, Dennis; Marschall, Holger & Bothe, Dieter (2019), Chemical Engineering & Technology, 42 (7), 1349–56.
https://doi.org/10.1002/ceat.201900044
Experimental and numerical investigation of reactive species transport around a small rising bubble. Weiner, Andre; Timmermann, Jens; Pesci, Chiara; Grewe, Jana; Hoffmann, Marko; Schlüter, Michael & Bothe, Dieter (2019), Chemical Engineering Science: X, 1, 100007.
https://doi.org/10.1016/j.cesx.2019.100007
The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model. Augner, Björn & Bothe, Dieter (2018), Discrete & Continuous Dynamical Systems – S, 0 (0), 0.
https://doi.org/10.3934/dcdss.2020406
Numerical simulation of single rising bubbles influenced by soluble surfactant in the spherical and ellipsoidal regime. Steinhausen, Matthias (2018). Technische Universität Darmstadt, Masterarbeit.
Direct numerical simulation of mass transfer in bubbly flows. Deising, D.; Bothe, D. & Marschall, H. (2018), Computers & Fluids, 172, 524–37. https://doi.org/10.1016/j.compfluid.2018.03.041
A comparative study of different mesh types for transport processes near gas bubbles regarding accuracy, stability, and run time. Kleikemper, J.-A. (2018). Technische Universität Darmstadt, Bachelorarbeit.
3D direct numerical simulations of reactive mass transfer from deformable single bubbles: An analysis of mass transfer coefficients and reaction selectivities. Falcone, Manuel; Bothe, Dieter & Marschall, Holger (2018), Chemical Engineering Science, 177, 523–36.
https://doi.org/10.1016/j.ces.2017.11.02
On the Kinematics of Contact Line Motion. Fricke, Mathis; Köhne, Matthias; Bothe, Dieter (2018). PAMM 18 (1).
https://doi.org/10.1002/pamm.201800451
Wetting phenomena with ALE interface tracking. Gründing, Dirk; Bothe, Dieter; Marschall, Holger (2018). PAMM 18 (1).
https://doi.org/10.1002/pamm.201800430
Boundedness-preserving implicit correction of mesh-induced errors for VOF based heat and mass transfer. Hill, S.; Deising, D.; Acher, T.; Klein, H.; Bothe, D. & Marschall, H. (2018), Journal of Computational Physics, 352, 285–300.
https://doi.org/10.1016/j.jcp.2017.09.027
Spectroscopic and Computational Analyses of Liquid–Liquid Interfacial Reaction Mechanism of Boric Acid Esterification with 2,2,4-Trimethyl-1,3-pentanediol in Boron Extraction Processes. Kunimoto, Masahiro; Bothe, Dieter; Tamura, Risa; Oyanagi, Takahiro; Fukunaka, Yasuhiro; Nakai, Hiromi; Homma, Takayuki (2018). The Journal of Physical Chemistry C 122 (19).
https://doi.org/10.1021/acs.jpcc.8b01086
An enhanced un-split face-vertex flux-based VoF method. Marić, Tomislav; Marschall, Holger & Bothe, Dieter (2018), Journal of Computational Physics, 371, 967–93.
https://doi.org/10.1016/j.jcp.2018.03.048
A numerical stabilization framework for viscoelastic fluid flow using the finite volume method on general unstructured meshes. Niethammer, M.; Marschall, H.; Kunkelmann, C. & Bothe, D. (2018), International Journal for Numerical Methods in Fluids, 86 (2), 131–66.
https://doi.org/10.1002/fld.4411
Computational analysis of single rising bubbles influenced by soluble surfactant. Pesci, Chiara; Weiner, Andre; Marschall, Holger & Bothe, Dieter (2018), Journal of Fluid Mechanics, 856, 709–63.
https://doi.org/10.1017/jfm.2018.723
Lagrangian/Eulerian numerical methods for fluid interface advection on unstructured meshes. Maric, Tomislav (2017). Technische Universität Darmstadt, Dissertation.
Global wellposedness for a class of reaction–advection–anisotropic-diffusion systems. Bothe, Dieter; Fischer, André; Pierre, Michel & Rolland, Guillaume (2017), Journal of Evolution Equations, 17 (1), 101–30.
https://doi.org/10.1007/s00028-016-0348-0
Strong well-posedness for a class of dynamic outflow boundary conditions for incompressible Newtonian flows. Bothe, Dieter; Kashiwabara, Takahito & Köhne, Matthias (2017), Journal of Evolution Equations, 17 (1), 131–71.
https://doi.org/10.1007/s00028-016-0352-4
Global strong solutions for a class of heterogeneous catalysis models. Bothe, Dieter; Köhne, Matthias; Maier, Siegfried & Saal, Jürgen (2017), Journal of Mathematical Analysis and Applications, 445 (1), 677–709.
https://doi.org/10.1016/j.jmaa.2016.08.016
Special Issue: Parabolic Evolution Equations, Maximal Regularity, and Applications – Dedicated to Jan Pruss Preface. Bothe, Dieter; Denk, Robert; Hieber, Matthias; Schnaubelt, Roland; Simonett, Gieri; Wilke, Mathias; Zacher, Rico (2017). Journal of Evolution Equations 17 (1).
https://doi.org/10.1007/s00028-017-0387-1
Numerical simulation of reactive species transfer at a spherical gas bubble. Karpowski, T.J.P. (2017). Technische Universität Darmstadt, Bachelorarbeit.
A numerical stabilization framework for viscoelastic fluid flow using the finite volume method on general unstructured meshes. Niethammer, Matthias; Marschall, Holger; Kunkelmann, C.; Bothe, Dieter (2017). International Journal for Numerical Methods in Fluids 86 (2).
https://doi.org/10.1002/fld.4411
Modeling and analysis of reactive multi-component two-phase flows with mass transfer and phase transition the isothermal incompressible case. Bothe, Dieter & Prüss, Jan (2017), Discrete & Continuous Dynamical Systems – S, 10 (4), 673–96.
https://doi.org/10.3934/dcdss.2017034
Colliding drops as coalescing and fragmenting liquid springs. Planchette, C.; Hinterbichler, H.; Liu, M.; Bothe, D. & Brenn, G. (2017), Journal of Fluid Mechanics, 814, 277–300.
https://doi.org/10.1017/jfm.2016.852
Highly accurate two-phase species transfer based on ALE Interface Tracking. Weber, Paul S.; Marschall, Holger & Bothe, Dieter (2017), International Journal of Heat and Mass Transfer, 104, 759–73.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.072
Advanced subgrid-scale modeling for convection-dominated species transport at fluid interfaces with application to mass transfer from rising bubbles. Weiner, Andre & Bothe, Dieter (2017), Journal of Computational Physics, 347, 261–89.
https://doi.org/10.1016/j.jcp.2017.06.040
Direct Numerical Simulations of Thermocapillary Driven Motions in Two-phase Flows. Lippert, Anja Charlotte (2016). Technische Universität Darmstadt, Dissertation.
A unified single-field model framework for Volume-Of-Fluid simulations of interfacial species transfer applied to bubbly flows. Deising, Daniel; Marschall, Holger & Bothe, Dieter (2016), Chemical Engineering Science, 139, 173–95.
https://doi.org/10.1016/j.ces.2015.06.021
Numerical and experimental analysis of local flow phenomena in laminar Taylor flow in a square mini-channel. Falconi, C. J.; Lehrenfeld, C.; Marschall, H.; Meyer, C.; Abiev, R.; Bothe, D.; Reusken, A.; Schlüter, M. & Wörner, M. (2016), Physics of Fluids, 28 (1), 12109.
https://doi.org/10.1063/1.4939498
A subgrid-scale model for reactive concentration boundary layers for 3D mass transfer simulations with deformable fluid interfaces. Gründing, Dirk; Fleckenstein, Stefan & Bothe, Dieter (2016), International Journal of Heat and Mass Transfer, 101, 476–87.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.119
Numerical study of head-on droplet collisions at high Weber numbers. Liu, M. & Bothe, D. (2016), Journal of Fluid Mechanics, 789, 785–805. https://doi.org/10.1017/jfm.2015.725
Applicability of the linearized theory of the Maxwell-Stefan equations. Weber, Paul S. & Bothe, Dieter (2016), AIChE Journal, 62 (8), 2929–46. https://doi.org/10.1002/aic.15317
Dynamic behaviour of buoyant high viscosity droplets rising in a quiescent liquid. Albert, C.; Kromer, J.; Robertson, A. M. & Bothe, D. (2015), Journal of Fluid Mechanics, 778, 485–533.
https://doi.org/10.1017/jfm.2015.393
Continuum thermodynamics of chemically reacting fluid mixtures. Bothe, Dieter & Dreyer, Wolfgang (2015), Acta Mechanica, 226 (6), 1757–805.
https://doi.org/10.1007/s00707-014-1275-1
Global Existence for a Class of Reaction-Diffusion Systems with Mass Action Kinetics and Concentration-Dependent Diffusivities. Bothe, Dieter & Rolland, Guillaume (2015), Acta Applicandae Mathematicae, 139 (1), 25–57.
https://doi.org/10.1007/s10440-014-9968-y
Numerical modeling and investigation of viscoelastic fluid–structure interaction applying an implicit partitioned coupling algorithm. Chen, Xingyuan; Schäfer, Michael & Bothe, Dieter (2015), Journal of Fluids and Structures, 54, 390–421.
https://doi.org/10.1016/j.jfluidstructs.2014.12.001
Direct Numerical Simulation of droplet formation processes under the influence of soluble surfactant mixtures. Dieter-Kissling, Kathrin; Marschall, Holger & Bothe, Dieter (2015), Computers & Fluids, 113, 93–105.
https://doi.org/10.1016/j.compfluid.2015.01.017
Numerical method for coupled interfacial surfactant transport on dynamic surface meshes of general topology. Dieter-Kissling, Kathrin; Marschall, Holger & Bothe, Dieter (2015), Computers & Fluids, 109, 168–84.
https://doi.org/10.1016/j.compfluid.2014.12.017
Direct numerical simulations of thermocapillary migration of a droplet attached to a solid wall. Fath, Anja & Bothe, Dieter (2015), International Journal of Multiphase Flow, 77, 209–21.
https://doi.org/10.1016/j.ijmultiphaseflow.2015.08.018
Numerical and experimental analysis of short-scale Marangoni convection on heated structured surfaces. Fath, Anja; Horn, Tobias; Gambaryan-Roisman, Tatiana; Stephan, Peter & Bothe, Dieter (2015), International Journal of Heat and Mass Transfer, 86, 764–79.
https://doi.org/10.1016/j.ijheatmasstransfer.2015.03.034
A Volume-of-Fluid-based numerical method for multi-component mass transfer with local volume changes. Fleckenstein, Stefan & Bothe, Dieter (2015), Journal of Computational Physics, 301, 35–58.
https://doi.org/10.1016/j.jcp.2015.08.011
lentFoam – A hybrid Level Set/Front Tracking method on unstructured meshes. Marić, Tomislav; Marschall, Holger & Bothe, Dieter (2015), Computers & Fluids, 113, 20–31.
https://doi.org/10.1016/j.compfluid.2014.12.019
Global linear stability analysis of falling films with inlet and outlet. Albert, C.; Tezuka, A. & Bothe, D. (2014), Journal of Fluid Mechanics, 745, 444–86.
https://doi.org/10.1017/jfm.2014.57
Direct Numerical Simulation of interfacial mass transfer into falling films. Albert, Christoph; Marschall, Holger & Bothe, Dieter (2014), International Journal of Heat and Mass Transfer, 69, 343–57.
https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.025
Global existence for diffusion–electromigration systems in space dimension three and higher. Bothe, Dieter; Fischer, André; Pierre, Michel & Rolland, Guillaume (2014), Nonlinear Analysis: Theory, Methods & Applications, 99, 152–66.
https://doi.org/10.1016/j.na.2013.12.015
Global Well-Posedness and Stability of Electrokinetic Flows. Bothe, Dieter; Fischer, André & Saal, Jürgen (2014), SIAM Journal on Mathematical Analysis, 46 (2), 1263–316.
https://doi.org/10.1137/120880926
On the applicability of Drop Profile Analysis Tensiometry at high flow rates using an interface tracking method. Dieter-Kissling, Kathrin; Karbaschi, Mohsen; Marschall, Holger; Javadi, Aliyar; Miller, Reinhard & Bothe, Dieter (2014), Colloids and Surfaces A: Physicochemical and Engineering Aspects, 441, 837–45.
https://doi.org/10.1016/j.colsurfa.2012.10.047
Validation of Interface Capturing and Tracking techniques with different surface tension treatments against a Taylor bubble benchmark problem. Marschall, Holger; Boden, Stephan; Lehrenfeld, Christoph; Falconi D., Carlos J.; Hampel, Uwe; Reusken, Arnold; Wörner, Martin & Bothe, Dieter (2014), Computers & Fluids, 102, 336–52.
https://doi.org/10.1016/j.compfluid.2014.06.030
Efficient computation of the flow around single fluid particles using an artificial boundary condition. Weirich, D.; Köhne, M. & Bothe, D. (2014), International Journal for Numerical Methods in Fluids, 75 (3), 184–204.
https://doi.org/10.1002/fld.3890
Numerical Modeling of Fluid-Structure Interaction with Rheologically Complex Fluids. Chen, Xingyuan (2014). Technische Universität Darmstadt, Dissertation.
Modeling and direct numerical simulation of mass transfer from rising gas bubbles. Fleckenstein, Stefan (2014). Technische Universität Darmstadt, Dissertation.
A Volume-of-Fluid-based method for mass transfer processes at fluid particles. Bothe, Dieter & Fleckenstein, Stefan (2013), Chemical Engineering Science, 101, 283–302.
https://doi.org/10.1016/j.ces.2013.05.029
Direkte Numerische Simulation binärer Kollisionen newtonscher und nichtnewtonscher Tropfen. Focke, Christian (2013). Technische Universität Darmstadt, Dissertation.
On a Class of Energy Preserving Boundary Conditions for Incompressible Newtonian Flows. Bothe, Dieter; Köhne, Matthias & Prüss, Jan (2013), SIAM Journal on Mathematical Analysis, 45 (6), 3768–822.
https://doi.org/10.1137/120870670
A comparison of stabilisation approaches for finite-volume simulation of viscoelastic fluid flow. Chen, Xingyuan; Marschall, Holger; Schäfer, Michael & Bothe, Dieter (2013), International Journal of Computational Fluid Dynamics, 27 (6-7), 229–50.
https://doi.org/10.1080/10618562.2013.829916
Simplified modeling of the influence of surfactants on the rise of bubbles in VOF-simulations. Fleckenstein, Stefan & Bothe, Dieter (2013), Chemical Engineering Science, 102, 514–23.
https://doi.org/10.1016/j.ces.2013.08.033
Collision between high and low viscosity droplets: Direct Numerical Simulations and experiments. Focke, C.; Kuschel, M.; Sommerfeld, M. & Bothe, D. (2013), International Journal of Multiphase Flow, 56, 81–92.
https://doi.org/10.1016/j.ijmultiphaseflow.2013.05.008
Numerical modeling of thermocapillary two-phase flows with evaporation using a two-scalar approach for heat transfer. Ma, C. & Bothe, D. (2013), Journal of Computational Physics, 233, 552–73.
https://doi.org/10.1016/j.jcp.2012.09.011
Influence of surface tension models on the hydrodynamics of wavy laminar falling films in Volume of Fluid-simulations. Albert, Christoph; Raach, Henning & Bothe, Dieter (2012), International Journal of Multiphase Flow, 43, 66–71.
https://doi.org/10.1016/j.ijmultiphaseflow.2012.02.011
The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction. Bothe, Dieter & Pierre, Michel (2012), Discrete & Continuous Dynamical Systems – S, 5 (1), 49–59.
https://doi.org/10.3934/dcdss.2012.5.49
Cross-Diffusion Limit for a Reaction-Diffusion System with Fast Reversible Reaction. Bothe, Dieter; Pierre, Michel & Rolland, Guillaume (2012), Communications in Partial Differential Equations, 37 (11), 1940–66.
https://doi.org/10.1080/03605302.2012.715706
Abstract reaction-diffusion systems with $m$-completely accretive diffusion operators and measurable reaction rates. Bothe, Dieter & Wittbold, Petra (2012), Communications on Pure and Applied Analysis, 11 (6), 2239–60.
https://doi.org/10.3934/cpaa.2012.11.2239
Direct numerical simulation of binary off-center collisions of shear thinning droplets at high Weber numbers. Focke, C. & Bothe, D. (2012), Physics of Fluids, 24 (7), 73105.
https://doi.org/10.1063/1.4737582
Direkte Numerische Simulation binärer Kollisionen scherverdünnender Tropfen. Focke, Christian & Bothe, Dieter (2012), Chemie Ingenieur Technik, 84 (1-2), 121–26.
https://doi.org/10.1002/cite.201100145