Publications
|
Journal articles
|
An analytical study of capillary rise dynamics: Critical conditions and hidden oscillations. Fricke, Mathis; Ouro-Koura, El Assad; Raju, Suraj; von Klitzing, Regine; De Coninck, Joel; Bothe, Dieter (2023), Physica D: Nonlinear Phenomena. https://doi.org/10.1016/j.physd.2023.133895
|
Studying macro- and mesoscopic wetting dynamics of a spreading oil droplet using multiple wavelength interferometry. Richter, T.; Fricke, Mathis; Stephan, Peter; Tropea, Cameron; Hussong, Jeanette (2023), Experiments in Fluids. https://doi.org/10.1007/s00348-023-03717-5
|
Computing hydrodynamic eigenmodes of channel flow with slip – A highly accurate algorithm. Raju, Suraj; Gründing, Dirk; Marić, Tomislav; Bothe, Dieter, Fricke, Mathis (2022), The Canadian Journal of Chemical Engineering. http://doi.org/10.1002/cjce.24598
|
Porosity Centrifuge: Analysis of the Porous Structure of Paper in Contact with Water under Hypergravity Conditions. Postulka, N.; Seibert, M.; Geißler, A.; Fricke, Mathis; Bothe, Dieter; Meckel, T.; Biesalski, M. (2022).
|
Breakup dynamics of Capillary Bridges on Hydrophobic Stripes. Hartmann, Maximilian; Fricke, Mathis; Weimar, Lukas; Gründing, Dirk; Marić, Tomislav; Bothe, Dieter & Hardt, Steffen (2021), International Journal of Multiphase Flow, 140, 103582. https://doi.org/10.1016/j.ijmultiphaseflow.2021.103582
|
Boundary conditions for dynamic wetting – A mathematical analysis. Fricke, Mathis & Bothe, Dieter (2020), European Physical Journal Special Topics 229, 1849-1865. https://doi.org/10.1140/epjst/e2020-900249-7
|
A comparative study of transient capillary rise using direct numerical simulations. Gründing, Dirk; Smuda, Martin; Antritter, Thomas; Fricke, Mathis; Rettenmaier, Daniel; Kummer, Florian; Stephan, Peter; Marschall, Holger & Bothe, Dieter (2020), Applied Mathematical Modelling 86, 142-165. https://doi.org/10.1016/j.apm.2020.04.020
|
Contact line advection using the geometrical Volume-of-Fluid method. Fricke, Mathis; Marić, Tomislav & Bothe, Dieter (2020), Journal of Computational Physics 407, 109221. https://doi.org/10.1016/j.jcp.2019.109221
|
A kinematic evolution equation for the dynamic contact angle and some consequences. Fricke, Mathis; Köhne, Matthias & Bothe, Dieter (2019), Physica D: Nonlinear Phenomena 394, 26-43. https://doi.org/10.1016/j.physd.2019.01.008
|
|
Books and Theses
|
Mathematical modeling and Volume-of-Fluid based simulation of dynamic wetting. Fricke, Mathis (2021), PhD Thesis. https://doi.org/10.12921/tuprints-00014274
|
Characterization of particle size distributions via angular light scattering. Fricke, Mathis, Master Thesis (unpublished).
|
Der Satz von Noether und seine Anwendungen. Fricke, Mathis (2014), Bachelor Thesis. http://dx.doi.org/10.13140/RG.2.2.34783.20649
|
Vergleich von Methoden zur Rekonstruktion von Quantenzuständen. Fricke, Mathis (2012), Bachelor Thesis. http://dx.doi.org/10.13140/RG.2.2.25298.50889
|
|
Conference proceedings
|
Contact line advection using the Level Set method. Fricke, Mathis; Marić, Tomislav & Bothe, Dieter (2019), Proceedings in Applied Mathematics and Mechanics. https://doi.org/10.1002/pamm.201900476
|
Capillary Rise – Jurin’s Height vs Spherical Cap. Gründing, Dirk; Fricke, Mathis & Bothe, Dieter (2019), Proceedings in Applied Mathematics and Mechanics. https://doi.org/10.1002/pamm.201900336
|
On the kinematics of contact line motion. Fricke, Mathis; Köhne, Matthias & Bothe, Dieter (2018), Proceedings in Applied Mathematics and Mechanics. https://doi.org/10.1002/pamm.201800451
|
|
Data and Software
|
Breakup Dynamics of Capillary Bridges on Hydrophobic Stripes: Research data. Hartmann, Michael; Fricke, Mathis; Weimar, Lukas; Gründing, Dirk; Marić, Tomislav; Bothe, Dieter & Hardt, Steffen (2021). https://doi.org/10.48328/tudatalib-425
|
A comparative study of transient capillary rise using direct numericalsimulations: Benchmark Data. Gründing, Dirk; Smuda, Martin; Antritter, Thomas; Fricke, Mathis; Rettenmaier, Daniel; Kummer, Florian; Stephan, Peter; Marschall, Holger & Bothe, Dieter (2020). https://doi.org/10.25534/tudatalib-173
|
Contact Line Advection using the Volume-of-FluidMethod: Data and FORTRAN-Implementations. Fricke, Mathis; Marić, Tomislav & Bothe, Dieter (2020). https://doi.org/10.25534/tudatalib-147
|
Contact Line Advection using the Level SetMethod: Data and C++-Implementations. Fricke, Mathis; Marić, Tomislav; Vučković, Alekasandar & Bothe, Dieter (2019). https://doi.org/10.25534/tudatalib-58
|