Dr. Mathis Fricke

Contact

work +49 6151 16-21468

Work L2|06 411
Peter-Grünberg-Straße 10
64287 Darmstadt


Research Interests

  • Mathematical modeling and numerical simulation of multiphase flows
  • Dynamic wetting phenomena
  • Reactive multiphase flows
  • Volume-of-Fluid and Level Set methods
  • Inverse problems


University Education

  • 2013 B. Sc. Physics, Heinrich-Heine-Universität Düsseldorf
  • 2014 B. Sc. Mathematics, TU Darmstadt
  • 2015 M. Sc. Mathematics, TU Darmstadt
  • 2020 Ph.D. (Dr. rer. nat.), Department of Mathematics, TU Darmstadt


Awards

  • Dissertationspreis der Freunde der TU Darmstadt “für hervorragende wissenschaftliche Leistungen”, 2021
  • 2020 Doctorate degree with distinction, Department of Mathematics, TU Darmstadt


Professional Activities

  • Member of DFG Collaborative Research Center 1194 “Interaction between Transport and Wetting Processes”, Deputy Spokesperson of the gender equality team
  • Elected member of the Faculty Council of the Department of Mathematics (starting in October 2021)
  • Referee for the Journal of Computational Physics, International Journal of Heat and Mass Transfer and The European Physical Journal
  • Member of the Deutsche Physikalische Gesellschaft (DPG)
Publications
Journal articles
An analytical study of capillary rise dynamics: Critical conditions and hidden oscillations. Fricke, Mathis; Ouro-Koura, El Assad; Raju, Suraj; von Klitzing, Regine; De Coninck, Joel; Bothe, Dieter (2023), Physica D: Nonlinear Phenomena.
https://doi.org/10.1016/j.physd.2023.133895
Studying macro- and mesoscopic wetting dynamics of a spreading oil droplet using multiple wavelength interferometry. Richter, T.; Fricke, Mathis; Stephan, Peter; Tropea, Cameron; Hussong, Jeanette (2023), Experiments in Fluids.
https://doi.org/10.1007/s00348-023-03717-5
Computing hydrodynamic eigenmodes of channel flow with slip – A highly accurate algorithm. Raju, Suraj; Gründing, Dirk; Marić, Tomislav; Bothe, Dieter, Fricke, Mathis (2022), The Canadian Journal of Chemical Engineering.
http://doi.org/10.1002/cjce.24598
Porosity Centrifuge: Analysis of the Porous Structure of Paper in Contact with Water under Hypergravity Conditions. Postulka, N.; Seibert, M.; Geißler, A.; Fricke, Mathis; Bothe, Dieter; Meckel, T.; Biesalski, M. (2022).
Breakup dynamics of Capillary Bridges on Hydrophobic Stripes. Hartmann, Maximilian; Fricke, Mathis; Weimar, Lukas; Gründing, Dirk; Marić, Tomislav; Bothe, Dieter & Hardt, Steffen (2021), International Journal of Multiphase Flow, 140, 103582.
https://doi.org/10.1016/j.ijmultiphaseflow.2021.103582
Boundary conditions for dynamic wetting – A mathematical analysis. Fricke, Mathis & Bothe, Dieter (2020), European Physical Journal Special Topics 229, 1849-1865.
https://doi.org/10.1140/epjst/e2020-900249-7
A comparative study of transient capillary rise using direct numerical simulations. Gründing, Dirk; Smuda, Martin; Antritter, Thomas; Fricke, Mathis; Rettenmaier, Daniel; Kummer, Florian; Stephan, Peter; Marschall, Holger & Bothe, Dieter (2020), Applied Mathematical Modelling 86, 142-165.
https://doi.org/10.1016/j.apm.2020.04.020
Contact line advection using the geometrical Volume-of-Fluid method. Fricke, Mathis; Marić, Tomislav & Bothe, Dieter (2020), Journal of Computational Physics 407, 109221.
https://doi.org/10.1016/j.jcp.2019.109221
A kinematic evolution equation for the dynamic contact angle and some consequences. Fricke, Mathis; Köhne, Matthias & Bothe, Dieter (2019), Physica D: Nonlinear Phenomena 394, 26-43.
https://doi.org/10.1016/j.physd.2019.01.008
Books and Theses
Mathematical modeling and Volume-of-Fluid based simulation of dynamic wetting. Fricke, Mathis (2021), PhD Thesis.
https://doi.org/10.12921/tuprints-00014274
Characterization of particle size distributions via angular light scattering. Fricke, Mathis, Master Thesis (unpublished).
Der Satz von Noether und seine Anwendungen. Fricke, Mathis (2014), Bachelor Thesis.
http://dx.doi.org/10.13140/RG.2.2.34783.20649
Vergleich von Methoden zur Rekonstruktion von Quantenzuständen. Fricke, Mathis (2012), Bachelor Thesis.
http://dx.doi.org/10.13140/RG.2.2.25298.50889
Conference proceedings
Contact line advection using the Level Set method. Fricke, Mathis; Marić, Tomislav & Bothe, Dieter (2019), Proceedings in Applied Mathematics and Mechanics.
https://doi.org/10.1002/pamm.201900476
Capillary Rise – Jurin’s Height vs Spherical Cap. Gründing, Dirk; Fricke, Mathis & Bothe, Dieter (2019), Proceedings in Applied Mathematics and Mechanics.
https://doi.org/10.1002/pamm.201900336
On the kinematics of contact line motion. Fricke, Mathis; Köhne, Matthias & Bothe, Dieter (2018), Proceedings in Applied Mathematics and Mechanics.
https://doi.org/10.1002/pamm.201800451
Data and Software
Breakup Dynamics of Capillary Bridges on Hydrophobic Stripes: Research data. Hartmann, Michael; Fricke, Mathis; Weimar, Lukas; Gründing, Dirk; Marić, Tomislav; Bothe, Dieter & Hardt, Steffen (2021).
https://doi.org/10.48328/tudatalib-425
A comparative study of transient capillary rise using direct numericalsimulations: Benchmark Data. Gründing, Dirk; Smuda, Martin; Antritter, Thomas; Fricke, Mathis; Rettenmaier, Daniel; Kummer, Florian; Stephan, Peter; Marschall, Holger & Bothe, Dieter (2020).
https://doi.org/10.25534/tudatalib-173
Contact Line Advection using the Volume-of-FluidMethod: Data and FORTRAN-Implementations. Fricke, Mathis; Marić, Tomislav & Bothe, Dieter (2020).
https://doi.org/10.25534/tudatalib-147
Contact Line Advection using the Level SetMethod: Data and C++-Implementations. Fricke, Mathis; Marić, Tomislav; Vučković, Alekasandar & Bothe, Dieter (2019).
https://doi.org/10.25534/tudatalib-58